Muutke küpsiste eelistusi

E-raamat: Computational Materials Science: Surfaces, Interfaces, Crystallization

(Oles Gonchar Dnipropetrovsk National University, Ukraine), (Oles Gonchar Dnipropetrovsk National University, Ukraine), (Max Planck Institute for Intelligent Systems, Germany)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 19-Nov-2013
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780124202078
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 93,86 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 19-Nov-2013
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780124202078
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Computational Materials Science provides the theoretical basis necessary for understanding atomic surface phenomena and processes of phase transitions, especially crystallization, is given. The most important information concerning computer simulation by different methods and simulation techniques for modeling of physical systems is also presented. A number of results are discussed regarding modern studies of surface processes during crystallization. There is sufficiently full information on experiments, theory, and simulations concerning the surface roughening transition, kinetic roughening, nucleation kinetics, stability of crystal shapes, thin film formation, imperfect structure of small crystals, size dependent growth velocity, distribution coefficient at growth from alloy melts, superstructure ordering in the intermetallic compound.

Computational experiments described in the last chapter allow visualization of the course of many processes and better understanding of many key problems in Materials Science. There is a set of practical steps concerning computational procedures presented. Open access to executable files in the book make it possible for everyone to understand better phenomena and processes described in the book.

  • Valuable reference book, but also helpful as a supplement to courses
  • Computer programs available to supplement examples
  • Presents several new methods of computational materials science and clearly summarizes previous methods and results

Arvustused

"This book is an excellent summary of principles of computational modeling of physical phenomena in materials science, especially in surfaces, interfaces, and crystallization." --MRS Bulletin,November 2014

Muu info

Recent advances in computational materials science compiled in one volume with foundational research, including theory and practical examples.
Acknowledgments xiii
Preface xv
1 Computer Modeling of Physical Phenomena and Processes
1(34)
1.1 Application of Computers in Physics
1(7)
1.1.1 Role of Models in Theoretical Study
1(1)
1.1.2 Methods of Computer Modeling of Physical Processes
2(1)
1.1.3 Influence of Computers on Methods of Physical Researches
3(2)
1.1.4 The Basic Aspects of Computer Application in Physics
5(2)
1.1.5 Computational Experiments and Their Role in Modern Physics
7(1)
1.2 Determination of Statistical Characteristics of Systems by the MC Method
8(16)
1.2.1 Determination of Average Values of Physical Quantities
8(4)
1.2.2 Application of the MC Method to Physical Problems
12(2)
1.2.3 The Metropolis Algorithm and the Thermostat Algorithm
14(3)
1.2.4 Boundary Conditions
17(3)
1.2.5 The Classical Atomic Interaction Potential Functions
20(4)
1.2.6 Typical Errors in the MC Method
24(1)
1.3 The MD Method and Its Application
24(11)
1.3.1 Algorithms for Numerical Solution of the Equation of Motion
25(5)
1.3.2 Near-Neighbor Calculations
30(1)
1.3.3 Typical Elements of the Program for MD Modeling
31(1)
References
32(3)
2 Basic Concepts of Theory of Phase Transformations
35(36)
2.1 The Method of Thermodynamic Functions
35(5)
2.1.1 Internal Energy
36(1)
2.1.2 The Helmholtz Free Energy
37(2)
2.1.3 The Gibbs Free Energy
39(1)
2.2 Thermodynamic Functions of One-Component Systems
40(1)
2.3 Conditions of Equilibrium in the Thermodynamic System
41(1)
2.4 Equilibrium Conditions for Multiphase Systems
42(1)
2.5 Different Types of Phase Transformations
43(10)
2.5.1 Equilibrium Conditions for the First-Order Phase Transitions
46(3)
2.5.2 The Ehrenfest Equations
49(1)
2.5.3 The Gibbs Phase Rule
50(3)
2.6 Influence of the Interfacial Tension on Crystallization of Liquids
53(4)
2.7 Phenomena Connected with Formation of Solutions
57(14)
2.7.1 Heat Effects at the Solution Formation
57(1)
2.7.2 The Raoult's and Henry's Laws
57(4)
2.7.3 Partial Thermodynamic Functions
61(1)
2.7.4 Ideal Solutions; the van't Hoff Equation; the Distribution Coefficient
62(2)
2.7.5 Real Solutions and Regular Solutions
64(2)
2.7.6 The Basic Positions of the Quasi-Chemical Theory of Solutions
66(2)
2.7.7 Calculation of Interatomic Binding Energies
68(1)
References
69(2)
3 Diffusion Problems of Crystal Growth: Methods of Numerical Solutions
71(34)
3.1 Differential Equations for the Heat and Mass Transport Processes
71(9)
3.1.1 Diffusion
71(4)
3.1.2 Thermal Conductivity and Heat Emission
75(2)
3.1.3 Differential Equations of Convective Heat Transfer
77(2)
3.1.4 Euler's Algorithm for the Numerical Solution of Differential Equations
79(1)
3.2 Boundary Value Problems
80(2)
3.2.1 Boundary Conditions
80(1)
3.2.2 The Boundary Value Problem in the Dimensionless Variables
81(1)
3.3 Analytical Solutions of Heat and Mass Transport Problems for Crystal Growth
82(10)
3.3.1 Stefan's Problems
82(1)
3.3.2 Stefan's Problem in the Initial Statement
83(3)
3.3.3 Boundary Conditions for the Diffusion Problem of Crystal Growth
86(1)
3.3.4 Growth of a Cylinder and a Sphere from Solution at Constant Surface Concentration
87(2)
3.3.5 On the Heat and Mass Transport During Growth of Single Crystals
89(3)
3.4 Numerical Solutions for the Heat and Mass Transport Problems
92(13)
3.4.1 The Finite Difference Schemes for Solution of the Heat and Mass Transport Problems
92(3)
3.4.2 Boundary Conditions at Interfaces during Crystal Growth
95(1)
3.4.3 The First Numerical Solutions of Diffusion Problems of Crystal Growth
96(2)
3.4.4 A Technique for the Numerical Analysis of Growth or Dissolution of Spherical or Cylindrical Crystals
98(3)
3.4.5 Study of the Transport Phenomena in the Framework of the Lattice Boltzmann Method
101(2)
References
103(2)
4 Structure of the Boundary Surfaces
105(22)
4.1 Surface Phenomena
105(1)
4.2 The Major Discoveries Contributing to the Development of Surface Science
106(1)
4.3 On the Experimental Research Techniques of Surfaces
107(4)
4.4 Features of the Surface Phase Transitions
111(2)
4.5 Reconstruction
113(5)
4.6 Transition from an Atomically Smooth to an Atomically Rough Surface Structure
118(2)
4.7 Surface Melting
120(7)
References
124(3)
5 Adsorption. The Gibbs Adsorption Equation
127(24)
5.1 Adsorption on Solid Surfaces
127(8)
5.1.1 Physical and Chemical Adsorption. Different Types of Adsorption Isotherms
127(2)
5.1.2 Langmuir's Equation
129(1)
5.1.3 Model for the Computer Analysis of the Adsorption
130(2)
5.1.4 The BET Isotherm of the Multimolecular Adsorption
132(3)
5.2 The Gibbs Adsorption Equation
135(16)
5.2.1 The Physical Phase Boundary
135(2)
5.2.2 The Elementary Strain Energy: Interfacial Tension
137(1)
5.2.3 The Gibbs Method in Thermodynamics of Surface Phenomena
138(5)
5.2.4 Different Ways of Choice of the Separating Surface
143(2)
5.2.5 Adsorption Equilibrium in Multi-Component Systems
145(4)
References
149(2)
6 Simulation Techniques for Atomic Systems
151(36)
6.1 Nonclassical Potentials of Atomic Interaction
151(8)
6.1.1 The Empirical Pseudopotential Method
151(1)
6.1.2 DFT and Ab Initio Calculations
152(2)
6.1.3 Embedded Atom Method and Modified Embedded Atom Method
154(2)
6.1.4 Definition of Potentials of Atomic Interaction for Mixed Systems
156(2)
6.1.5 The Problem of Choice of the Pair Potential Function
158(1)
6.2 Finding the Equilibrium Structures by the MC Method and Their Analysis
159(9)
6.2.1 Searching for Equilibrium Structures
159(1)
6.2.2 Evaluation of Structural Properties
160(1)
6.2.3 The Radial Pair Distribution Function
161(3)
6.2.4 The Topological Analysis of the Simulated Atomic Configurations by the Voronoi -- Delone Method
164(3)
6.2.5 Evaluation of Pressure and Definition of the State Equation
167(1)
6.3 Kinetic MC Modeling
168(7)
6.3.1 The Basic Relations for the Transition Probabilities
168(4)
6.3.2 Developing More Realistic Models for Study of the Surface Processes
172(3)
6.4 Particularities in Application of the Molecular Dynamics Method in the Case of Phase Transitions
175(12)
6.4.1 Application of the Molecular Dynamics Method in Different Ensembles
175(3)
6.4.2 Reaching the Equilibrium State and Measuring Macroscopic Parameters
178(2)
6.4.3 Kinetic Properties
180(3)
References
183(4)
7 The Surface Processes During Crystallization
187(58)
7.1 Surface Energy and Equilibrium Forms of Crystals
187(4)
7.1.1 Surface Energy in the First Approximation and its Anisotropy
187(2)
7.1.2 Equilibrium Forms of Crystals
189(1)
7.1.3 The Curie--Wulff Principle
190(1)
7.2 Atomic Structure of Crystal Surfaces
191(8)
7.2.1 Lifetime and Diffusion of Adsorbed Atoms
191(2)
7.2.2 Structure of Steps on the Crystal Surface
193(2)
7.2.3 Roughness of the Crystal Faces
195(3)
7.2.4 Simulation of Crystal Growth Within the "Solid-on-Solid" Model
198(1)
7.3 The Surface Kinetics
199(7)
7.3.1 Movement of a Step
199(1)
7.3.2 The Dislocation Mechanism of Growth
200(1)
7.3.3 Two-Dimensional Nucleation Growth Mechanism
201(1)
7.3.4 Growth Rate by the Normal Growth Mechanism
202(1)
7.3.5 Role of Bulk Transport Processes During Crystal Growth
203(1)
7.3.6 Application of MC Simulation Technique to Study Growth of Small Crystals
203(3)
7.4 Formation of Thin Films
206(12)
7.4.1 Atomic Mechanisms of the Film Formation
206(4)
7.4.2 Kinetics of Epitaxial Growth of Thin Films
210(2)
7.4.3 Formation of Films Through the Liquid Phase at Deposition
212(3)
7.4.4 Kinetic Modeling of Film Deposition from a Gas Phase
215(3)
7.5 Shapes of Crystal Growth and Their Stability
218(11)
7.5.1 Shapes of the Free Crystal Growth
218(1)
7.5.2 Stability of Spherical Crystals
218(3)
7.5.3 Stability of Polyhedrons
221(3)
7.5.4 Numerical Calculations of Evolution of the Crystal Shapes
224(5)
7.6 Development of Cellular Structure During Directional Solidification
229(16)
7.6.1 Concentration (Diffusion) Supercooling
229(2)
7.6.2 The Basic Results of the Theory of Small Perturbations
231(4)
7.6.3 Modeling Directional Solidification Using Finite Difference Schemes
235(4)
7.6.4 Kinetic Modeling of Directional Solidification by the MC Method
239(1)
References
240(5)
8 Modern Simulations by the Molecular Dynamics Method
245(56)
8.1 Cluster Structure of Supercooled Liquids and Glasses
245(15)
8.1.1 Amorphous and Nanocrystalline Materials
245(1)
8.1.2 Techniques for Local Structure Analysis of Simulated Models
246(4)
8.1.3 Cluster Structure of Supercooled Liquids and Glasses
250(10)
8.2 Nucleation Kinetics
260(9)
8.2.1 The Main Classical Equation for the Nucleation Kinetics
260(4)
8.2.2 The Dependences of the Surface Tension on the Temperature and Radius of Nuclei
264(2)
8.2.3 Critical Radii and Waiting Times: Results of Simulations for Pure Elements
266(3)
8.3 Imperfect Structures of Small Crystallization Centers
269(4)
8.3.1 Local Distribution Functions for Crystals of Different Size
269(1)
8.3.2 Calculations of the Macroscopic Thermodynamic Driving Force
269(3)
8.3.3 The Size-Dependent Thermodynamic Driving Force
272(1)
8.3.4 Sizes of Critical Nuclei at Large Supercoolings
272(1)
8.4 Crystal Growth Kinetics in MD Models
273(6)
8.4.1 On Mechanism and Kinetics of Growth of Metal Crystals
273(2)
8.4.2 The Simulated Growth Velocities of Single Crystals
275(3)
8.4.3 The Size Effect in Growth Velocity
278(1)
8.5 Recent MD Results on Crystallization from Alloy Melts
279(22)
8.5.1 Growth of Disordered Solid Solutions from Alloy Melts. Solute Trapping and Solute Drag Effects
279(5)
8.5.2 Crystallization of the Intermetallic Compound: Kinetics and Disorder Trapping
284(11)
References
295(6)
9 Computational Experiments in Materials Science
301
9.1 Diffusion in Solids
301(6)
9.1.1 Model for Algorithm Construction
302(4)
9.1.2 Recommended Experiments
306(1)
9.2 Stefan's Problem of Ice Growth
307(1)
9.2.1 Recommended Experiments
308(1)
9.3 Growth of a Spherical Crystals from a Binary Melt
308(4)
9.3.1 Recommended Experiments
312(1)
9.4 Crystallization After Laser Processing of a Metal Surface
312(4)
9.4.1 Recommended Experiments
316(1)
9.5 Directional Solidification
316(5)
9.5.1 Recommended Experiments
321(1)
9.6 Ising's Model
321(3)
9.6.1 Recommended Experiments
324(1)
9.7 Adsorption
324(3)
9.7.1 Recommended Experiments
327(1)
9.8 Determination of the Equilibrium Structure by the Monte Carlo Method
327(4)
9.8.1 Recommended Experiments
330(1)
9.9 Modeling of Crystal Growth by the Monte Carlo Method
331(3)
9.9.1 The Crystal Growth Forms
331(1)
9.9.2 Probabilities of Transitions
331(1)
9.9.3 Modeling of Growth of Kossel's Crystal
331(2)
9.9.4 Recommended Experiments
333(1)
9.10 The Method of Molecular Dynamics
334(12)
9.10.1 Potentials and Forces
335(2)
9.10.2 Algorithms for Calculating Velocities and Coordinates
337(2)
9.10.3 Designations of Principal Constants and Variables in the Program
339(1)
9.10.4 Procedures for Calculations of the System Characteristics
339(3)
9.10.5 Statistics
342(3)
9.10.6 Recommended Experiments
345(1)
9.11 Fractal Dimension and Renormalization
346(11)
9.11.1 Definition of Fractal Dimension
346(2)
9.11.2 Fractal Dimensionality of Isolated Clusters
348(2)
9.11.3 Groups of Renormalization
350(3)
9.11.4 The Renorm-Group Calculation of the Fractal Dimensionality
353(3)
9.11.5 Recommended Experiments
356(1)
9.12 Complex Analysis of Microstructures
357(3)
9.12.1 Recommended Experiments
360(1)
9.13 How to Prepare Directives for Simulations with LAMMPS
360
9.13.1 From Official LAMMPS Information
361(1)
9.13.2 Some Package Command and Building of the Executable File with the GPU Package
362(3)
9.13.3 The LAMMPS Input Script
365(5)
References
370