List of Contributors |
|
xv | |
1 Using the DiffCorr Package to Analyze and Visualize Differential Correlations in Biological Networks |
|
1 | (34) |
|
|
|
|
1 | (3) |
|
1.1.1 An Introduction to Omics and Systems Biology |
|
|
1 | (1) |
|
1.1.2 Correlation Networks in Omics and Systems Biology |
|
|
1 | (1) |
|
1.1.3 Network Modules and Differential Network Approaches |
|
|
2 | (2) |
|
1.1.4 Aims of this Chapter |
|
|
4 | (1) |
|
|
4 | (4) |
|
|
4 | (1) |
|
|
5 | (1) |
|
1.2.3 Main Functions in DiffCorr |
|
|
5 | (1) |
|
1.2.4 Installing the DiffCorr Package |
|
|
6 | (2) |
|
1.3 Constructing Co-Expression (Correlation) Networks from Omics Data - Transcriptome Data set |
|
|
8 | (13) |
|
1.3.1 Downloading the Transcriptome Data set |
|
|
8 | (1) |
|
|
9 | (2) |
|
1.3.3 Calculation of the Correlation and Visualization of Correlation Networks |
|
|
11 | (4) |
|
|
15 | (2) |
|
1.3.5 Gene Ontology Enrichment Analysis |
|
|
17 | (4) |
|
1.4 Differential Correlation Analysis by DiffCorr Package |
|
|
21 | (9) |
|
1.4.1 Calculation of Differential Co-Expression between Organs in Arabidopsis |
|
|
21 | (5) |
|
1.4.2 Exploring the Metabolome Data of Flavonoid-Deficient Arabidopsis |
|
|
26 | (3) |
|
1.4.3 Avoiding Pitfalls in (Differential) Correlation Analysis |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
30 | (1) |
|
|
30 | (1) |
|
|
30 | (5) |
2 Analytical Models and Methods for Anomaly Detection in Dynamic, Attributed Graphs |
|
35 | (28) |
|
|
|
|
|
|
35 | (1) |
|
2.2 Chapter Definitions and Notation |
|
|
36 | (1) |
|
2.3 Anomaly Detection in Graph Data |
|
|
37 | (4) |
|
2.3.1 Neighborhood-Based Techniques |
|
|
37 | (1) |
|
2.3.2 Frequent Subgraph Techniques |
|
|
38 | (1) |
|
2.3.3 Anomalies in Random Graphs |
|
|
39 | (2) |
|
|
41 | (3) |
|
2.4.1 Models with Attributes |
|
|
41 | (2) |
|
2.4.2 Dynamic Graph Models |
|
|
43 | (1) |
|
2.5 Spectral Subgraph Detection in Dynamic, Attributed Graphs |
|
|
44 | (6) |
|
|
44 | (2) |
|
2.5.2 Filter Optimization |
|
|
46 | (1) |
|
2.5.3 Residuals Analysis in Attributed Graphs |
|
|
47 | (3) |
|
|
50 | (1) |
|
2.7 Demonstration in Random Synthetic Backgrounds |
|
|
51 | (4) |
|
2.8 Data Analysis Example |
|
|
55 | (3) |
|
|
58 | (1) |
|
|
58 | (1) |
|
|
59 | (4) |
3 Bayesian Computational Algorithms for Social Network Analysis |
|
63 | (20) |
|
|
|
|
63 | (1) |
|
3.2 Social Networks as Random Graphs |
|
|
64 | (1) |
|
3.3 Statistical Modeling Approaches to Social Network Analysis |
|
|
64 | (2) |
|
3.3.1 Exponential Random Graph Models (ERGMs) |
|
|
65 | (1) |
|
3.3.2 Latent Space Models (LSMs) |
|
|
65 | (1) |
|
3.4 Bayesian Inference for Social Network Models |
|
|
66 | (1) |
|
3.4.1 R-Based Software Tools |
|
|
67 | (1) |
|
|
67 | (13) |
|
3.5.1 Bayesian Inference for Exponential Random Graph Models |
|
|
68 | (3) |
|
3.5.2 Bayesian Inference for Latent Space Models |
|
|
71 | (5) |
|
3.5.3 Predictive Goodness-of-Fit (GoF) Diagnostics |
|
|
76 | (4) |
|
|
80 | (1) |
|
|
81 | (2) |
4 Threshold Degradation in R Using iDEMO |
|
83 | (42) |
|
|
|
|
83 | (2) |
|
4.2 Statistical Overview: Degradation Models |
|
|
85 | (7) |
|
4.2.1 Wiener Degradation-Based Process |
|
|
85 | (3) |
|
4.2.1.1 Lifetime Information |
|
|
86 | (1) |
|
4.2.1.2 Log-Likelihood Function |
|
|
87 | (1) |
|
4.2.2 Gamma Degradation-Based Process |
|
|
88 | (1) |
|
4.2.2.1 Lifetime Information |
|
|
88 | (1) |
|
4.2.2.2 Log-Likelihood Function |
|
|
89 | (1) |
|
4.2.3 Inverse Gaussian Degradation-Based Process |
|
|
89 | (2) |
|
4.2.3.1 Lifetime Distribution |
|
|
90 | (1) |
|
4.2.3.2 Log-Likelihood Function |
|
|
91 | (1) |
|
4.2.4 Model Selection Criteria |
|
|
91 | (1) |
|
|
91 | (1) |
|
4.2.6 Threshold Degradation |
|
|
92 | (1) |
|
4.3 iDEMO Interface and Functions |
|
|
92 | (9) |
|
4.3.1 Overview of the Package iDEMO Functionality |
|
|
93 | (1) |
|
|
93 | (1) |
|
|
93 | (3) |
|
|
94 | (1) |
|
4.3.3.2 Basic Information |
|
|
95 | (1) |
|
4.3.3.3 Degradation Model Selection |
|
|
96 | (1) |
|
4.3.4 Single Degradation Model Analysis |
|
|
96 | (5) |
|
4.3.4.1 Parameter Estimation |
|
|
97 | (1) |
|
4.3.4.2 Lifetime Information |
|
|
98 | (3) |
|
|
101 | (1) |
|
4.3.6 Computational Details |
|
|
101 | (1) |
|
|
101 | (21) |
|
|
102 | (4) |
|
|
106 | (6) |
|
|
112 | (10) |
|
|
122 | (1) |
|
|
122 | (3) |
5 Optimization of Stratified Sampling with the R Package SamplingStrata: Applications to Network Data |
|
125 | (26) |
|
|
|
5.1 Networks and Stratified Sampling |
|
|
125 | (1) |
|
5.2 The R Package SamplingStrata |
|
|
126 | (13) |
|
|
126 | (4) |
|
5.2.2 A General Procedure for the Optimization of Strata in a Frame |
|
|
130 | (2) |
|
|
132 | (7) |
|
5.3 Application to Networks |
|
|
139 | (10) |
|
5.3.1 Use of Networks as Frames |
|
|
139 | (6) |
|
5.3.2 Sampling Massive Networks |
|
|
145 | (4) |
|
|
149 | (1) |
|
|
149 | (2) |
6 Exploring the Role of Small Molecules in Biological Systems Using Network Approaches |
|
151 | (22) |
|
|
|
6.1 The Role of Networks in Drug Discovery |
|
|
152 | (1) |
|
6.2 R for Network Analyses |
|
|
153 | (1) |
|
6.3 Linking Small Molecules to Targets, Pathways, and Diseases |
|
|
154 | (8) |
|
6.3.1 Drug-Target Networks |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
158 | (1) |
|
6.3.6 Scaffold-Document Networks |
|
|
159 | (3) |
|
6.4 R as a Platform for Network Analyses in Drug Discovery |
|
|
162 | (3) |
|
|
165 | (1) |
|
|
165 | (1) |
|
|
166 | (7) |
7 Performing Network Alignments with R |
|
173 | (28) |
|
|
|
|
173 | (2) |
|
7.2 Problems, Models, and Algorithms |
|
|
175 | (8) |
|
|
176 | (4) |
|
7.2.1.1 Pairwise Network Alignment |
|
|
176 | (2) |
|
|
178 | (1) |
|
7.2.1.3 Multiple Network Alignment |
|
|
179 | (1) |
|
7.2.2 Models and Algorithms |
|
|
180 | (1) |
|
7.2.3 Comparison and Challenges |
|
|
180 | (3) |
|
|
180 | (2) |
|
|
182 | (1) |
|
|
182 | (1) |
|
7.3 Algorithms Based on Conditional Random Fields |
|
|
183 | (10) |
|
7.3.1 CNetQ for Network Querying |
|
|
183 | (3) |
|
7.3.1.1 General Framework |
|
|
183 | (2) |
|
|
185 | (1) |
|
|
185 | (1) |
|
7.3.1.4 Network Simplification |
|
|
186 | (1) |
|
|
186 | (1) |
|
7.3.2 CNetA for Pairwise Network Alignment |
|
|
186 | (3) |
|
7.3.2.1 Iterative Bidirectional Mapping Strategy |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
188 | (1) |
|
7.3.2.4 Evaluation Measures |
|
|
189 | (1) |
|
7.3.3 CNetMA for Multiple Network Alignment |
|
|
189 | (4) |
|
|
189 | (1) |
|
|
190 | (1) |
|
|
190 | (1) |
|
|
191 | (2) |
|
7.4 Performing Network Alignments with R |
|
|
193 | (3) |
|
|
193 | (1) |
|
|
193 | (1) |
|
|
193 | (1) |
|
|
193 | (2) |
|
7.4.2.1 Input File Format |
|
|
194 | (1) |
|
7.4.2.2 Output File Format |
|
|
194 | (1) |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
195 | (1) |
|
7.4.3.2 Pairwise Network Alignment |
|
|
195 | (1) |
|
7.4.4 Web Services and Tool Functions |
|
|
196 | (1) |
|
|
196 | (1) |
|
|
197 | (4) |
8 l1-Penalized Methods in High-Dimensional Gaussian Markov Random Fields |
|
201 | (66) |
|
|
|
|
|
201 | (1) |
|
8.2 Graph Theory: Terminology and Basic Topological Notions |
|
|
202 | (1) |
|
8.3 Probabilistic Graphical Models |
|
|
203 | (1) |
|
|
204 | (3) |
|
8.4.1 Ising Model and Extensions |
|
|
205 | (1) |
|
8.4.2 Gaussian Markov Random Fields |
|
|
206 | (1) |
|
8.5 Sparse Inference in High-dimensional GMRFs |
|
|
207 | (45) |
|
8.5.1 Neighborhood Selection |
|
|
207 | (2) |
|
8.5.2 The R Package simone |
|
|
209 | (1) |
|
8.5.3 Osteolytic Lesions Data Set: An Analysis by Neighborhood Selection Method |
|
|
210 | (5) |
|
8.5.4 Graphical Lasso Estimator |
|
|
215 | (2) |
|
8.5.5 The R Package glasso: Computing the Gradient and Coefficient Solution Path on a Simulated Data Set |
|
|
217 | (6) |
|
8.5.6 Computational Aspects of the glasso Estimator: the Block-Coordinate Descent Algorithm |
|
|
223 | (2) |
|
8.5.7 Faster Computation via Exact Covariance Thresholding |
|
|
225 | (2) |
|
8.5.8 Lung Cancer Microarray Data: An Analysis by glasso Estimator |
|
|
227 | (6) |
|
8.5.9 The Joint Graphical Lasso |
|
|
233 | (2) |
|
8.5.10 Computational Aspects of the jglasso Estimator: ADMM Algorithm |
|
|
235 | (4) |
|
|
239 | (2) |
|
8.5.12 Lung Cancer Microarray Data: An Analysis by jglasso Estimator |
|
|
241 | (2) |
|
8.5.13 Structured Graphical Lasso |
|
|
243 | (5) |
|
8.5.13.1 Computational Aspects of the sglasso Estimator: Cyclic Coordinate Algorithms |
|
|
246 | (2) |
|
8.5.14 The R Package sglasso |
|
|
248 | (2) |
|
8.5.15 Neisseria meningitidis Data Set: An Analysis by fglasso Estimator |
|
|
250 | (2) |
|
8.6 Selecting the Optimal Value of the Tuning Parameter |
|
|
252 | (4) |
|
8.7 Summary and Conclusion |
|
|
256 | (3) |
|
|
259 | (8) |
9 Cluster Analysis of Social Networks Using R |
|
267 | (22) |
|
|
|
267 | (1) |
|
9.2 Cluster Analysis in Social Networks |
|
|
268 | (2) |
|
9.2.1 Social Network Data |
|
|
268 | (1) |
|
9.2.1.1 The Data as a Graph |
|
|
268 | (1) |
|
9.2.1.2 The Data as a Matrix |
|
|
269 | (1) |
|
9.2.2 Clustering in Social Networks |
|
|
269 | (1) |
|
9.3 Cluster Analysis in Social Networks Using R |
|
|
270 | (15) |
|
9.3.1 R Packages for Cluster Analysis |
|
|
270 | (1) |
|
9.3.2 Data Loading and Formatting |
|
|
270 | (4) |
|
9.3.2.1 Removing Zero Edges |
|
|
271 | (1) |
|
9.3.2.2 Coercing the Data into a Graph Object |
|
|
271 | (1) |
|
9.3.2.3 Creating Social and Task Subgraphs |
|
|
272 | (2) |
|
9.3.3 Agglomerative Hierarchical Clustering |
|
|
274 | (5) |
|
9.3.3.1 Measuring Similarity/Dissimilarity |
|
|
274 | (1) |
|
|
275 | (1) |
|
|
276 | (3) |
|
9.3.4 Edge Betweenness Clustering Algorithm |
|
|
279 | (2) |
|
9.3.5 Fast Greedy Modularity Optimization Algorithm |
|
|
281 | (2) |
|
|
283 | (2) |
|
9.4 Discussion and Further Readings |
|
|
285 | (1) |
|
|
286 | (3) |
10 Inference and Analysis of Gene Regulatory Networks in R |
|
289 | (18) |
|
|
|
|
|
|
289 | (1) |
|
|
290 | (1) |
|
10.3 Installation of Required R Packages from CRAN and Bioconductor |
|
|
291 | (1) |
|
|
292 | (2) |
|
10.5 Bc3net Gene Regulatory Network Inference |
|
|
294 | (3) |
|
10.6 Retrieving and Generating Gene Sets for a Functional Analysis |
|
|
297 | (1) |
|
10.7 Pathway and Other Gene Set Collections |
|
|
298 | (4) |
|
10.7.1 Functional Enrichment Analysis of Gene Regulatory Networks |
|
|
300 | (2) |
|
|
302 | (1) |
|
|
303 | (4) |
11 Visualization of Biological Networks Using NetBioV |
|
307 | (28) |
|
|
|
|
|
|
307 | (3) |
|
11.2 Network Visualization |
|
|
310 | (3) |
|
|
313 | (6) |
|
11.3.1 Global Network Layouts |
|
|
313 | (3) |
|
11.3.2 Modular Network Layout |
|
|
316 | (1) |
|
11.3.3 Layered Network (Multiroot) Layout |
|
|
317 | (1) |
|
|
318 | (1) |
|
11.3.4.1 Information Flow |
|
|
318 | (1) |
|
|
318 | (1) |
|
11.3.4.3 Color Schemes, Node Labeling |
|
|
318 | (1) |
|
11.3.4.4 Interface to R and Customization |
|
|
319 | (1) |
|
11.4 Example: Visualization of Networks Using NetBioV |
|
|
319 | (6) |
|
11.4.1 Loading Library and Data |
|
|
320 | (1) |
|
11.4.2 Global Layout Style |
|
|
320 | (2) |
|
11.4.2.1 R Code in Figure 11.4 |
|
|
320 | (2) |
|
11.4.3 Modular Layout Style |
|
|
322 | (1) |
|
11.4.3.1 R Code in Figure 11.5 |
|
|
322 | (1) |
|
11.4.4 Layered Layout Style |
|
|
323 | (3) |
|
11.4.4.1 R Code in Figure 11.6 |
|
|
323 | (2) |
|
|
325 | (1) |
|
|
326 | (3) |
|
11.6.1 R Code for the Visualization in Figures 11.2 and 11.3 |
|
|
326 | (3) |
|
|
329 | (1) |
|
11.7.1 Spiral Layout Style in Figure 11.7 |
|
|
329 | (1) |
|
|
330 | (5) |
Index |
|
335 | |