Muutke küpsiste eelistusi

E-raamat: Computational Partial Differential Equations Using MATLAB(R)

(University of Nevada-Las Vegas), (University of Nevada-Las Vegas)
  • Formaat: 422 pages
  • Sari: Textbooks in Mathematics
  • Ilmumisaeg: 26-Sep-2019
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429556531
  • Formaat - PDF+DRM
  • Hind: 57,19 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 422 pages
  • Sari: Textbooks in Mathematics
  • Ilmumisaeg: 26-Sep-2019
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429556531

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In this popular text for an Numerical Analysis course, the authors introduce several major methods of solving various partial differential equations (PDEs). The text uniquely emphasizes both theoretical numerical analysis and practical implementation of the algorithms in MATLAB, useful for students in computational science and engineering.



In this popular text for an Numerical Analysis course, the authors introduce several major methods of solving various partial differential equations (PDEs) including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques including the classic finite difference method, finite element method, and state-of-the-art numercial methods.The text uniquely emphasizes both theoretical numerical analysis and practical implementation of the algorithms in MATLAB. This new edition includes a new chapter, Finite Value Method, the presentation has been tightened, new exercises and applications are included, and the text refers now to the latest release of MATLAB.



 



Key Selling Points:



 



  • A successful textbook for an undergraduate text on numerical analysis or methods taught in mathematics and computer engineering.


  • This course is taught in every university throughout the world with an engineering department or school.


  • Competitive advantage broader numerical methods (including finite difference, finite element, meshless method, and finite volume method), provides the MATLAB source code for most popular PDEs with detailed explanation about the implementation and theoretical analysis. No other existing textbook in the market offers a good combination of theoretical depth and practical source codes.

Brief Overview of Partial Differential Equations



Finite Difference Methods for Parabolic Equations



Finite Difference Methods for Hyperbolic Equations



Finite Difference Methods for Elliptic Equations



Higher Order Compact Difference Methods



Finite Element Methods: Basic Theory



Finite Element Methods: Programming



Mixed Finite Element Methods



Finite Element Methods for Electromagnetics



Meshless Methods with Radial Basis Functions



Other Meshless Methods

Jichun Li ia a professor of mathematics at the University of Nevada, Las Vegas. He earned a Ph.D in Applied Mathematics from Florida State University and in addition to authoring several journal papers and three other books, he is a founding editor-in-chief of Results in Applied Mathematics. His major research areas are on numerical methods for partial differential equations.





Yi-Tung Chen is the co-director for the Center for Energy Research at the University of Nevada, Las Vegas. He has a Ph.D. from the University of Utah and is an aerial systems expert in computational fluid dynamics, fluid-structure interaction and aerodynamics.