Preface |
|
vii | |
Introductory Remarks |
|
xv | |
Introduction to Computational Physics |
|
1 | (2) |
1 Euler Algorithm |
|
3 | (14) |
|
|
3 | (1) |
|
1.2 First Example and Sample Code |
|
|
4 | (3) |
|
|
4 | (2) |
|
1.2.2 A Sample Fortran Code |
|
|
6 | (1) |
|
|
7 | (3) |
|
|
7 | (2) |
|
|
9 | (1) |
|
1.4 Periodic Motions and Euler-Cromer and Verlet Algorithms |
|
|
10 | (3) |
|
1.4.1 Harmonic Oscillator |
|
|
10 | (1) |
|
|
11 | (1) |
|
1.4.3 Euler-Cromer Algorithm |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
1.6 Simulation 1: Euler Algorithm-Air Resistance |
|
|
14 | (1) |
|
1.7 Simulation 2: Euler Algorithm-Projectile Motion |
|
|
15 | (1) |
|
1.8 Simulation 3: Euler, Euler-Cromer and Verlet Algorithms |
|
|
16 | (1) |
2 Classical Numerical Integration |
|
17 | (6) |
|
2.1 Rectangular Approximation |
|
|
17 | (1) |
|
2.2 Trapezoidal Approximation |
|
|
18 | (1) |
|
2.3 Parabolic Approximation or Simpson's Rule |
|
|
18 | (2) |
|
|
20 | (1) |
|
2.5 Simulation 4: Numerical Integrals |
|
|
21 | (2) |
3 Newton-Raphson Algorithms and Interpolation |
|
23 | (8) |
|
|
23 | (1) |
|
3.2 Newton-Raphson Algorithm |
|
|
23 | (1) |
|
|
24 | (1) |
|
3.4 Lagrange Interpolation |
|
|
25 | (1) |
|
3.5 Cubic Spline Interpolation |
|
|
26 | (2) |
|
3.6 The Method of Least Squares |
|
|
28 | (1) |
|
3.7 Simulation 5: Newton-Raphson Algorithm |
|
|
29 | (2) |
4 The Solar System: The Runge-Kutta Methods |
|
31 | (12) |
|
|
31 | (4) |
|
4.1.1 Newton's Second Law |
|
|
31 | (1) |
|
4.1.2 Astronomical Units and Initial Conditions |
|
|
32 | (1) |
|
|
32 | (2) |
|
4.1.4 The Inverse-Square Law and Stability of Orbits |
|
|
34 | (1) |
|
4.2 Euler-Cromer Algorithm |
|
|
35 | (1) |
|
4.3 The Runge-Kutta Algorithm |
|
|
36 | (3) |
|
|
36 | (1) |
|
4.3.2 Example 1: The Harmonic Oscillator |
|
|
37 | (1) |
|
4.3.3 Example 2: The Solar System |
|
|
37 | (2) |
|
4.4 Precession of the Perihelion of Mercury |
|
|
39 | (1) |
|
|
39 | (1) |
|
4.6 Simulation 6: Runge-Kutta Algorithm: Solar-System |
|
|
40 | (1) |
|
4.7 Simulation 7: Precession of the perihelion of Mercury |
|
|
41 | (2) |
5 Chaotic Pendulum |
|
43 | (12) |
|
|
43 | (2) |
|
|
45 | (2) |
|
5.2.1 Euler-Cromer Algorithm |
|
|
46 | (1) |
|
5.2.2 Runge-Kutta Algorithm |
|
|
46 | (1) |
|
|
47 | (3) |
|
5.3.1 Butterfly Effect: Sensitivity to Initial Conditions |
|
|
47 | (1) |
|
5.3.2 Poincare Section and Attractors |
|
|
48 | (1) |
|
5.3.3 Period-Doubling Bifurcations |
|
|
48 | (1) |
|
|
49 | (1) |
|
5.3.5 Spontaneous Symmetry Breaking |
|
|
49 | (1) |
|
5.4 Simulation 8: The Butterfly Effect |
|
|
50 | (1) |
|
5.5 Simulation 9: Poincare Sections |
|
|
50 | (2) |
|
5.6 Simulation 10: Period Doubling |
|
|
52 | (1) |
|
5.7 Simulation 11: Bifurcation Diagrams |
|
|
53 | (2) |
6 Molecular Dynamics |
|
55 | (8) |
|
|
55 | (1) |
|
6.2 The Lennard-Jones Potential |
|
|
56 | (1) |
|
6.3 Units, Boundary Conditions and Verlet Algorithm |
|
|
57 | (2) |
|
6.4 Some Physical Applications |
|
|
59 | (1) |
|
6.4.1 Dilute Gas and Maxwell Distribution |
|
|
59 | (1) |
|
6.4.2 The Melting Transition |
|
|
60 | (1) |
|
6.5 Simulation 12: Maxwell Distribution |
|
|
60 | (1) |
|
6.6 Simulation 13: Melting Transition |
|
|
61 | (2) |
7 Pseudo Random Numbers and Random Walks |
|
63 | (12) |
|
|
63 | (3) |
|
7.1.1 Linear Congruent or Power Residue Method |
|
|
63 | (1) |
|
7.1.2 Statistical Tests of Randomness |
|
|
64 | (2) |
|
|
66 | (3) |
|
|
66 | (1) |
|
|
67 | (2) |
|
7.3 The Random Number Generators RAN 0,1,2 |
|
|
69 | (3) |
|
7.4 Simulation 14: Random Numbers |
|
|
72 | (1) |
|
7.5 Simulation 15: Random Walks |
|
|
73 | (2) |
8 Monte Carlo Integration |
|
75 | (14) |
|
8.1 Numerical Integration |
|
|
75 | (3) |
|
8.1.1 Rectangular Approximation Revisited |
|
|
75 | (1) |
|
8.1.2 Midpoint Approximation of Multidimensional Integrals |
|
|
76 | (2) |
|
8.1.3 Spheres and Balls in d Dimensions |
|
|
78 | (1) |
|
8.2 Monte Carlo Integration: Simple Sampling |
|
|
78 | (2) |
|
8.2.1 Sampling (Hit or Miss) Method |
|
|
79 | (1) |
|
|
79 | (1) |
|
8.2.3 Sample Mean Method in Higher Dimensions |
|
|
80 | (1) |
|
8.3 The Central Limit Theorem |
|
|
80 | (2) |
|
8.4 Monte Carlo Errors and Standard Deviation |
|
|
82 | (2) |
|
8.5 Nonuniform Probability Distributions |
|
|
84 | (2) |
|
8.5.1 The Inverse Transform Method |
|
|
84 | (2) |
|
8.5.2 The Acceptance-Rejection Method |
|
|
86 | (1) |
|
8.6 Simulation 16: Midpoint and Monte Carlo Approximations |
|
|
86 | (1) |
|
8.7 Simulation 17: Nonuniform Probability Distributions |
|
|
87 | (2) |
9 The Metropolis Algorithm and the Ising Model |
|
89 | (16) |
|
9.1 The Canonical Ensemble |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
91 | (1) |
|
9.4 The Metropolis Algorithm |
|
|
92 | (2) |
|
9.5 The Heat-Bath Algorithm |
|
|
94 | (1) |
|
9.6 The Mean Field Approximation |
|
|
94 | (3) |
|
9.6.1 Phase Diagram and Critical Temperature |
|
|
94 | (2) |
|
|
96 | (1) |
|
9.7 Simulation of the Ising Model and Numerical Results |
|
|
97 | (4) |
|
|
97 | (2) |
|
9.7.2 Some Numerical Results |
|
|
99 | (2) |
|
9.8 Simulation 18: The Metropolis Algorithm and the Ising Model |
|
|
101 | (1) |
|
9.9 Simulation 19: The Ferromagnetic Second Order Phase Transition |
|
|
102 | (1) |
|
9.10 Simulation 20: The 2-Point Correlator |
|
|
103 | (1) |
|
9.11 Simulation 21: Hysteresis and the First Order Phase Transition |
|
|
104 | (1) |
Monte Carlo Simulations of Matrix Field Theory |
|
105 | (186) |
|
10 Metropolis Algorithm for Yang-Mills Matrix Models |
|
|
107 | (12) |
|
10.1 Dimensional Reduction |
|
|
107 | (5) |
|
|
107 | (1) |
|
10.1.2 Chern-Simons Action: Myers Term |
|
|
108 | (4) |
|
10.2 Metropolis Accept/Reject Step |
|
|
112 | (1) |
|
|
113 | (1) |
|
10.4 Auto-Correlation Time |
|
|
114 | (1) |
|
10.5 Code and Sample Calculation |
|
|
115 | (2) |
|
|
117 | (2) |
|
11 Hybrid Monte Carlo Algorithm for Yang-Mills Matrix Models |
|
|
119 | (12) |
|
11.1 The Yang-Mills Matrix Action |
|
|
119 | (1) |
|
11.2 The Leap Frog Algorithm |
|
|
120 | (2) |
|
11.3 Metropolis Algorithm |
|
|
122 | (1) |
|
11.4 Gaussian Distribution |
|
|
123 | (1) |
|
|
123 | (1) |
|
11.6 Emergent Geometry: An Exotic Phase Transition |
|
|
124 | (5) |
|
|
129 | (2) |
|
12 Hybrid Monte Carlo Algorithm for Noncommutative Phi-Four |
|
|
131 | (10) |
|
12.1 The Matrix Scalar Action |
|
|
131 | (1) |
|
12.2 The Leap Frog Algorithm |
|
|
132 | (1) |
|
12.3 Hybrid Monte Carlo Algorithm |
|
|
132 | (1) |
|
|
132 | (2) |
|
12.4.1 Partial Optimization |
|
|
132 | (2) |
|
|
134 | (1) |
|
12.5 The Non-Uniform Order: Another Exotic Phase |
|
|
134 | (5) |
|
|
134 | (1) |
|
12.5.2 Sample Simulations |
|
|
135 | (4) |
|
|
139 | (2) |
|
13 Lattice HMC Simulations of Phi42: A Lattice Example |
|
|
141 | (12) |
|
13.1 Model and Phase Structure |
|
|
141 | (4) |
|
|
145 | (2) |
|
13.3 Renormalization and Continuum Limit |
|
|
147 | (2) |
|
13.4 HMC Simulation Calculation of the Critical Line |
|
|
149 | (2) |
|
|
151 | (2) |
|
14 (Multi-Trace) Quartic Matrix Models |
|
|
153 | (10) |
|
14.1 The Pure Real Quartic Matrix Model |
|
|
153 | (1) |
|
14.2 The Multi-Trace Matrix Model |
|
|
154 | (2) |
|
|
156 | (2) |
|
14.4 The Disorder-to-Non-Uniform-Order Transition |
|
|
158 | (2) |
|
14.5 Other Suitable Algorithms |
|
|
160 | (2) |
|
14.5.1 Over-Relaxation Algorithm |
|
|
160 | (1) |
|
14.5.2 Heat-Bath Algorithm |
|
|
161 | (1) |
|
|
162 | (1) |
|
15 The Remez Algorithm and the Conjugate Gradient Method |
|
|
163 | (18) |
|
15.1 Minimax Approximations |
|
|
163 | (8) |
|
15.1.1 Minimax Polynomial Approximation and Chebyshev Polynomials |
|
|
163 | (5) |
|
15.1.2 Minimax Rational Approximation and Remez Algorithm |
|
|
168 | (3) |
|
15.1.3 The Code "AlgRemez" |
|
|
171 | (1) |
|
15.2 Conjugate Gradient Method |
|
|
171 | (8) |
|
|
171 | (4) |
|
15.2.2 The Conjugate Gradient Method as a Krylov Space Solver |
|
|
175 | (2) |
|
15.2.3 The Multi-Mass Conjugate Gradient Method |
|
|
177 | (2) |
|
|
179 | (2) |
|
16 Monte Carlo Simulation of Fermion Determinants |
|
|
181 | (20) |
|
|
181 | (4) |
|
16.2 Pseudo-Fermions and Rational Approximations |
|
|
185 | (2) |
|
16.3 More on The Conjugate-Gradient |
|
|
187 | (5) |
|
16.3.1 Multiplication by Mu' and (Mu')+ |
|
|
187 | (3) |
|
16.3.2 The Fermionic Force |
|
|
190 | (2) |
|
16.4 The Rational Hybrid Monte Carlo Algorithm |
|
|
192 | (5) |
|
|
192 | (1) |
|
|
193 | (4) |
|
16.5 Other Related Topics |
|
|
197 | (2) |
|
|
199 | (2) |
|
17 U(1) Gauge Theory on the Lattice: Another Lattice Example |
|
|
201 | (16) |
|
17.1 Continuum Considerations |
|
|
201 | (2) |
|
17.2 Lattice Regularization |
|
|
203 | (6) |
|
17.2.1 Lattice Fermions and Gauge Fields |
|
|
203 | (2) |
|
17.2.2 Quenched Approximation |
|
|
205 | (1) |
|
17.2.3 Wilson Loop, Creutz Ratio and Other Observables |
|
|
206 | (3) |
|
17.3 Monte Carlo Simulation of Pure U(1) Gauge Theory |
|
|
209 | (7) |
|
17.3.1 The Metropolis Algorithm |
|
|
209 | (3) |
|
17.3.2 Some Numerical Results |
|
|
212 | (3) |
|
17.3.3 Coulomb and Confinement Phases |
|
|
215 | (1) |
|
|
216 | (1) |
|
|
217 | (74) |
|
|
219 | (6) |
|
|
225 | (7) |
|
9.3 hybrid-scalar-fuzzy.f |
|
|
232 | (10) |
|
9.4 phi-four-on-lattice.f |
|
|
242 | (7) |
|
9.5 metropolis-scalar-multitrace.f |
|
|
249 | (7) |
|
|
256 | (2) |
|
|
258 | (3) |
|
9.8 hybrid-supersymmetric-ym.f |
|
|
261 | (18) |
|
9.9 u-one-on-the-lattice.f |
|
|
279 | (12) |
Index |
|
291 | |