Muutke küpsiste eelistusi

E-raamat: Computational Quantum Chemistry: Insights into Polymerization Reactions

Edited by (Professor of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, USA)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 16-Oct-2018
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128159842
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 211,58 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 16-Oct-2018
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128159842
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Computational Quantum Chemistry: Insights into Polymerization Reactions consolidates extensive research results, couples them with computational quantum chemistry (CQC) methods applicable to polymerization reactions, and presents those results systematically. CQC has advanced polymer reaction engineering considerably for the past two decades. The book puts these advances into perspective. It also allows you to access the most up-to-date research and CQC methods applicable to polymerization reactions in a single volume. The content is rigorous yet accessible to graduate students as well as researchers who need a reference of state-of-the-art CQC methods with polymerization applications.



• Consolidates more than 10 years of theoretical polymerization reaction research currently scattered across journal articles
• Accessibly presents CQC methods applicable to polymerization reactions
• Provides researchers with a one-stop source of the latest theoretical developments in polymer reaction engineering
List of Contributors
xi
Preface xiii
Chapter 1 Polymers, Polymerization Reactions, and Computational Quantum Chemistry
1(16)
Masoud Soroush
Michael C. Grady
1.1 Polymers
1(2)
1.2 Polymerization and Polymer Properties
3(1)
1.3 Polymer Characterization
3(2)
1.4 Limitations of Experiment-Based Approaches to Understand Polymerization Reactions
5(1)
1.5 Computational Quantum Chemistry
6(3)
1.5.1 Solvent Effects
8(1)
1.6 Conclusion
9(8)
Acknowledgment
10(1)
References
10(7)
Chapter 2 A Quantum Mechanical Approach for Accurate Rate Parameters of Free-Radical Polymerization Reactions
17(30)
Ivan A. Konstantinov
Linda J. Broadbelt
2.1 Introduction
17(1)
2.2 Multiple Reaction Pathways
18(2)
2.3 Density Functional Theory (DFT) Protocol and Transition State Theory (TST)
20(1)
2.4 Rate Parameters in Gas Phase
21(11)
2.4.1 Homopolymerization of Ethylene
22(3)
2.4.2 Relative Hydrogen-Abstraction Parameter
25(2)
2.4.3 Monomer Reactivity Ratio
27(5)
2.5 Rate Parameters in Condensed Phase
32(12)
2.5.1 Choice of Model System
32(4)
2.5.2 Multiple Reaction Pathways
36(3)
2.5.3 Modeling Rate Parameters in Condensed Phase
39(1)
2.5.4 Results and Discussion
40(3)
2.5.5 Scaling Entropy Estimates
43(1)
2.6 Conclusion
44(3)
References
45(1)
Further Reading
46(1)
Chapter 3 Determination of Reaction Rate Coefficients in Free-Radical Polymerization Using Density Functional Theory
47(52)
Evangelos Mavroudakis
Danilo Cuccato
Davide Moscatelli
3.1 Introduction
47(2)
3.1.1 Experimental Advances
48(1)
3.1.2 Computational Chemistry
48(1)
3.2 Free-Radical Polymerization
49(11)
3.2.1 Fundamental Reaction Scheme
50(1)
3.2.2 Challenges in FRP
51(1)
3.2.3 Copolymerization
52(1)
3.2.4 Secondary Reactions
52(1)
3.2.5 Hydrogen Transfer and Backbiting
53(2)
3.2.6 Branching Propagation
55(1)
3.2.7 β-Scission
56(1)
3.2.8 Termination of Mid-Chain Radicals
56(1)
3.2.9 Other Secondary Reactions
57(1)
3.2.10 Functional Monomers
58(1)
3.2.11 Solvent Effect on Reaction Kinetics
58(2)
3.3 Computational Methodology
60(9)
3.3.1 Density Functional Theory
60(1)
3.3.2 Transition State Theory
61(2)
3.3.3 Copolymerization Models
63(5)
3.3.4 Structural Optimization
68(1)
3.4 Estimating Reaction Rate Coefficients in Free-Radical Polymerization
69(20)
3.4.1 Homopolymerization and Radical Propagation
70(3)
3.4.2 Copolymerization
73(1)
3.4.3 Intramolecular and lntermolecular Secondary Reactions
74(5)
3.4.4 Exploring the Limits
79(10)
3.5 Conclusion
89(10)
References
90(9)
Chapter 4 Theoretical Insights Into Thermal Self-Initiation Reactions of Acrylates
99(36)
Sriraj Srinivasan
Andrew M. Rappe
Masoud Soroush
4.1 Introduction
99(1)
4.2 Flory and Mayo Self-Initiation Mechanisms
100(2)
4.3 Alkyl Acrylate Thermal Self-Initiation
102(12)
4.3.1 Prior Experimental Knowledge
102(1)
4.3.2 Knowledge Gained Using Quantum Chemical Calculations
102(10)
4.3.3 Alkyl Acrylate Summary
112(1)
4.3.4 Comparison With Estimates Obtained From Laboratory Experiments
113(1)
4.4 Methacrylate Thermal Self-Initiation
114(8)
4.4.1 Prior Experimental Knowledge
114(1)
4.4.2 Knowledge Gained Using Quantum Chemical Calculations
115(6)
4.4.3 Methacrylate Summary
121(1)
4.5 Monomer-Solvent Coinitiation
122(7)
4.5.1 Prior Experimental Knowledge
122(1)
4.5.2 Knowledge Gained Using Quantum Chemical Calculations
123(4)
4.5.3 Monomer-Solvent Coinitiation Summary
127(2)
4.6 Conclusion
129(6)
Acknowledgment
131(1)
References
131(4)
Chapter 5 Theoretical Insights Into Chain Transfer Reactions of Acrylates
135(60)
Masoud Soroush
Andrew M. Rappe
5.1 Introduction
135(3)
5.2 Chain Transfer to Monomer Reactions
138(7)
5.2.1 Prior Experimental Knowledge
138(1)
5.2.2 Knowledge Gained Using Quantum Chemical Calculations
139(6)
5.2.3 CTM Summary
145(1)
5.3 Intermolecular Chain Transfer to Polymer Reactions
145(13)
5.3.1 Prior Experimental Knowledge
146(1)
5.3.2 Knowledge Gained Using Quantum Chemical Calculations
147(7)
5.3.3 Continuum Solvation Models: Integral Equation Formalism-Polarizable Continuum Model and Conductor-Like Screening Model
154(4)
5.3.4 Intermolecular CTP Summary
158(1)
5.4 Chain Transfer to Solvent Reactions
158(11)
5.4.1 Prior Experimental Knowledge
158(1)
5.4.2 Knowledge Gained Using Quantum Chemical Calculations
159(9)
5.4.3 CTS Summary
168(1)
5.5 Backbiting and β-Scission Reactions
169(14)
5.5.1 Prior Experimental Knowledge
170(1)
5.5.2 Knowledge Gained Using Quantum Chemical Calculations
171(11)
5.5.3 Backbiting and β-Scission Summary
182(1)
5.6 Computational Studies of Polymerization Reactions in Solution (Liquid Phase)
183(1)
5.7 Conclusion
184(11)
Acknowledgment
186(1)
References
186(9)
Chapter 6 Theory and Applications of Thiyl Radicals in Polymer Chemistry
195(24)
Michelle L. Coote
Isa Degirmenci
6.1 Introduction
195(1)
6.2 Computational Methodology
196(1)
6.3 Sulfur-Centered Radical Stability
196(1)
6.4 Thiols as Chain Transfer Agents
197(3)
6.5 Thiol-Ene Polymerization
200(7)
6.6 Thiol-yne Polymerization
207(2)
6.7 Self-Healing Polymers
209(2)
6.8 Conclusion
211(8)
Acknowledgment
213(1)
References
213(6)
Chapter 7 Contribution of Computations to Metal-Mediated Radical Polymerization
219(50)
Rinaldo Poli
7.1 Introduction
219(1)
7.2 Principles of Controlled Radical Chain Growth
220(6)
7.2.1 Reversible Termination Methods
220(2)
7.2.2 Degenerative Transfer Methods
222(2)
7.2.3 Rate of Initiation
224(1)
7.2.4 Inverted Monomer Additions
224(2)
7.3 Interplaying Equilibria Involving Transition Metals
226(2)
7.4 Quantitative Value of Computed Thermodynamic and Kinetic Parameters: A Warni ng
228(1)
7.5 ATRP and OMRP-RT Moderating Equilibria
229(26)
7.5.1 Carbon-Halogen Bond Dissociation Enthalpy in ATRP Initiators
229(2)
7.5.2 ATRP and ATRP/OMRP-RT Interplay for Molybdenum Systems
231(3)
7.5.3 ATRP and ATRP/OMRP-RT Interplay for Other Metals
234(10)
7.5.4 Effect of the Electronic Structure on the ATRP Activation Mechanism
244(1)
7.5.5 OMRP Processes With Cobalt(II) Moderating Agents
245(10)
7.6 Exchange Barriers in OMRP-DT
255(1)
7.7 H-Atom Transfer in Catalytic Chain Transfer
256(3)
7.8 Mechanistic Studies in Catalyzed Radical Termination
259(3)
7.9 Conclusion
262(2)
7.10 List of Acronyms
264(5)
Acknowledgment
265(1)
References
265(4)
Chapter 8 A General Model to Explain the Isoselectivity of Olefin Polymerization Catalysts
269(18)
Claudio De Rosa
Rocco Di Girolamo
Giovanni Talarico
8.1 Introduction
269(1)
8.2 Models for Isotactic Propene Polymerization
270(2)
8.3 Models for Isotactic Propene Polymerization With Enantiomorphic Site Control
272(3)
8.4 Recent Findings to Update Models for Isotactic Propene Polymerization With Enantiomorphic Site Control
275(4)
8.5 General Models for Isotactic Propene Polymerization With Enantiomorphic Site Control
279(2)
8.6 Conclusion
281(1)
8.7 Computational Details
282(5)
Acknowledgment
282(1)
References
282(5)
Chapter 9 From Mechanistic Investigation to Quantitative Prediction: Kinetics of Homogeneous Transition Metal-Catalyzed a-Olefin Polymerization Predicted by Computational Chemistry
287(40)
Christian Ehm
Francesco Zaccaria
Roberta Cipullo
9.1 Introduction
287(1)
9.2 What Accuracy Is Required to Model Common Catalyst Performance Parameters in Transition Metal-Catalyzed Polymerization?
288(1)
9.3 How Good Is the Performance of Density Functional Theory for Problems in Transition Metal-Catalyzed Polymerization?
289(2)
9.4 How Accurate Is the Experimental Data?
291(1)
9.5 Predicting Regio- and Stereoselectivity in Propene Polymerization
292(9)
9.6 Predicting Comonomer Affinities in Olefin Copolymerization
301(4)
9.7 Predicting Absolute Rates of Propagation
305(1)
9.8 Predicting Molecular Weight: (3-hydrogen Transfer Mechanisms to Metal or Olefin
306(7)
9.9 Predicting Molecular Weight: Chain Transfer Mechanisms to Main Group Metal Alkyls
313(1)
9.10 Dormancy
314(3)
9.11 Homolysis
317(2)
9.12 Catalyst Decay
319(1)
9.13 Predicting Absolute Productivity
320(1)
9.14 Conclusion
321(6)
Acknowledgment
322(1)
References
322(5)
Chapter 10 Theoretical Insights into Olefin Polymerization Catalyzed by Cationic Organo Rare-Earth Metal Complexes
327(30)
Xiaohui Kang
Yi Luo
Zhaomin Hou
10.1 Introduction
327(2)
10.2 Theoretical Methods
329(2)
10.3 Polymerization of Ethylene and α-Olefins
331(4)
10.4 Polymerization of Styrene
335(7)
10.5 Polymerization of 1,3-Conjugated Dienes
342(7)
10.6 Polymerization of Heteroatom-Containing Olefins
349(2)
10.7 Conclusion and Outlook
351(6)
Acknowledgment
351(1)
References
352(5)
Index 357
Masoud Soroush is the George B. Francis Chair Professor of Engineering at Drexel University and directs the Future Layered nAnomaterials Knowledge and Engineering (FLAKE) Consortium, collaborating with over 30 researchers from Drexel, the University of Pennsylvania, and Purdue. He has held positions as a Visiting Scientist at DuPont and a Visiting Professor at Princeton. An Elected Fellow of AIChE and Senior Member of IEEE, Soroush has received numerous awards, including the AIChE 2023 Excellence in Process Development Research Award. He holds a BS from Abadan Institute of Technology and MS/PhD degrees from the University of Michigan, with research focusing on advanced manufacturing and nanomaterials.