Preface |
|
vii | |
About the Author |
|
ix | |
1 Introduction |
|
1 | (6) |
|
|
6 | (1) |
2 Lagrangian Method for Shock Wave and Stress Calculations |
|
7 | (30) |
|
|
8 | (1) |
|
2.2 The Governing Equations |
|
|
9 | (17) |
|
2.3 Calculation of Stress Deviators at tn+1 |
|
|
26 | (5) |
|
2.4 Correction of Stresses for Rigid Body Rotation During Δt |
|
|
31 | (1) |
|
2.5 Calculation of Pn+1 and n+1 |
|
|
32 | (2) |
|
2.6 Calculation of Longitudinal Sound Speed |
|
|
34 | (2) |
|
2.7 Artificial Viscosity Used in the Two-Dimensional Lagrangian Code |
|
|
36 | (1) |
|
|
36 | (1) |
3 Two-Dimensional Eulerian Method |
|
37 | (94) |
|
|
38 | (1) |
|
3.2 General Description of Physical Formulation |
|
|
39 | (21) |
|
3.2.1 The Conservation Equation for a Stress-Supporting Medium |
|
|
39 | (10) |
|
|
49 | (10) |
|
|
59 | (1) |
|
|
60 | (38) |
|
|
60 | (1) |
|
3.3.2 Summary of Calculation Procedure |
|
|
61 | (1) |
|
|
62 | (20) |
|
3.3.4 Stress Calculation in the Plastic Regime of Flow |
|
|
82 | (8) |
|
3.3.5 Particle Transport and Remapping |
|
|
90 | (3) |
|
3.3.6 Computation for Spall |
|
|
93 | (2) |
|
|
95 | (1) |
|
3.3.8 The Logic for the Calculation Procedure |
|
|
96 | (2) |
|
3.4 Truncation Error Analysis |
|
|
98 | (19) |
|
|
99 | (6) |
|
|
105 | (3) |
|
|
108 | (3) |
|
|
111 | (4) |
|
3.4.5 Deviatoric Stresses |
|
|
115 | (2) |
|
3.5 Equivalent Plastic Strain |
|
|
117 | (2) |
|
3.6 FCT Applied to Second-Order PIC |
|
|
119 | (9) |
|
|
119 | (1) |
|
3.6.2 Modified Mass Transport |
|
|
119 | (6) |
|
3.6.3 The Modified FCT Analysis |
|
|
125 | (3) |
|
|
128 | (3) |
4 EOS, Constitutive Relationship and High Explosive |
|
131 | (42) |
|
4.1 Introduction to the Equation of State |
|
|
133 | (1) |
|
4.2 The Mie - Gruneisen EOS and the Simple us, up Model |
|
|
133 | (2) |
|
|
135 | (1) |
|
4.4 The Tillotson Equation of State |
|
|
136 | (1) |
|
4.5 Introduction to the Constitutive Relationship |
|
|
136 | (1) |
|
|
137 | (1) |
|
4.7 Steinberg-Guinan Model |
|
|
137 | (3) |
|
4.8 Steinberg's New Model |
|
|
140 | (4) |
|
|
143 | (1) |
|
|
144 | (7) |
|
|
144 | (1) |
|
4.9.2 JWL Equation of State |
|
|
145 | (1) |
|
4.9.3 Small Variation of JWL EOS |
|
|
146 | (1) |
|
4.9.4 Computer Code for Two-Dimensional Programmed Burn |
|
|
146 | (4) |
|
4.9.5 Computer Code HEDET3 for Three-Dimensional Programmed Burn |
|
|
150 | (1) |
|
4.10 Derivation of the Hugoniot Relations |
|
|
151 | (7) |
|
|
151 | (1) |
|
4.10.2 Conservation of Mass |
|
|
152 | (3) |
|
4.10.3 Conservation of Momentum |
|
|
155 | (1) |
|
4.10.4 Conservation of Energy |
|
|
156 | (2) |
|
4.11 The Shock-Change Equations |
|
|
158 | (10) |
|
|
158 | (1) |
|
4.11.2 The Shock-Change Equation |
|
|
159 | (9) |
|
4.11.3 Summary of the Shock-Change Equation |
|
|
168 | (1) |
|
4.12 The Theoretical Spall Strength |
|
|
168 | (3) |
|
|
171 | (2) |
5 The Exact Dimensions of the Perforators |
|
173 | (34) |
|
|
174 | (1) |
|
|
175 | (1) |
|
|
176 | (1) |
|
|
177 | (1) |
|
|
178 | (1) |
|
|
178 | (2) |
|
|
180 | (1) |
|
|
181 | (1) |
|
5.9 The Penetrating Characteristic of the Penetrators |
|
|
182 | (8) |
|
|
182 | (1) |
|
5.9.2 Copper Liner of a Diameter 3.5 cm |
|
|
183 | (3) |
|
5.9.3 Perforators Described in Figs. 6 and 11 of the File EULE2D-Fig |
|
|
186 | (1) |
|
5.9.4 Perforators Described in Figs. 16, 26 and 31 of the File EULE2D-Fig |
|
|
187 | (2) |
|
5.9.5 Special Design of 4.3 cm Charge Diameter Shaped Charge |
|
|
189 | (1) |
|
|
190 | (5) |
|
5.11 Plotting Programs Using MATLAB |
|
|
195 | (1) |
|
5.12 The Exact Dimensions of Explosive Formed Projectile and Shaped Charge |
|
|
196 | (9) |
|
5.12.1 Copper Explosive Formed Projectile |
|
|
196 | (1) |
|
5.12.2 Bi-conical Copper Liner Shaped Charge |
|
|
197 | (1) |
|
5.12.3 Small Charge Diameter Conical Shaped Charge |
|
|
198 | (1) |
|
5.12.4 Small Charge Diameter Shaped Charge with Wave Shaper |
|
|
199 | (1) |
|
5.12.5 Non-axisymmetric Tantalum EFP Warhead |
|
|
200 | (2) |
|
5.12.6 Copper Hemi-spherical Liner with Energetic Explosive |
|
|
202 | (3) |
|
|
205 | (1) |
|
|
206 | (1) |
6 Two-Dimensional Lagrangian Method for Radiation Diffusion |
|
207 | (34) |
|
|
209 | (1) |
|
6.2 Definition of Variable and Notation |
|
|
210 | (5) |
|
6.3 The Governing Equation |
|
|
215 | (1) |
|
|
216 | (1) |
|
6.5 Calculation Procedures and Finite Differences |
|
|
216 | (9) |
|
6.6 Two-Dimensional Lagrangian Method for Radiation Diffusion Problems |
|
|
225 | (15) |
|
|
225 | (1) |
|
6.6.2 Finite Difference Approximation for the Radiation Diffusion Equation |
|
|
225 | (8) |
|
|
233 | (4) |
|
6.6.4 Monte Carlo Procedure |
|
|
237 | (3) |
|
|
240 | (1) |
Appendix A Rezone for Two-Dimensional Lagrangian Hydrodynamic Code |
|
241 | (68) |
|
|
242 | (1) |
|
|
243 | (3) |
|
A.2.1 Zone and Point Model |
|
|
243 | (1) |
|
|
243 | (2) |
|
A.2.3 Sub-zone Definition |
|
|
245 | (1) |
|
A.3 A Brief Description of the Rezone Method |
|
|
246 | (6) |
|
|
246 | (1) |
|
A.3.2 The Displacement Pass |
|
|
246 | (1) |
|
|
247 | (1) |
|
|
247 | (3) |
|
|
250 | (1) |
|
|
250 | (1) |
|
A.3.7 The Velocity Adjustment Pass |
|
|
250 | (1) |
|
|
250 | (2) |
|
|
252 | (7) |
|
|
252 | (1) |
|
A.4.2 Test Details - General Case |
|
|
252 | (4) |
|
A.4.3 Tests on Boundaries |
|
|
256 | (1) |
|
A.4.4 Additions to the Tests |
|
|
257 | (1) |
|
A.4.5 Limitations on the Testing |
|
|
257 | (2) |
|
A.4.6 Changes in Test Values |
|
|
259 | (1) |
|
|
259 | (1) |
|
A.5 The Displacement Pass |
|
|
259 | (12) |
|
A.5.1 Displacement Cases for the Interior Points |
|
|
260 | (1) |
|
A.5.2 Displacement on Boundary Points |
|
|
261 | (1) |
|
A.5.3 The Displacement Method |
|
|
261 | (6) |
|
A.5.4 Limitations on the Displacement Calculations |
|
|
267 | (4) |
|
|
271 | (1) |
|
|
271 | (3) |
|
|
271 | (1) |
|
|
272 | (2) |
|
A.7 Rezone Method - General Case |
|
|
274 | (14) |
|
A.7.1 Preparation - Definition of the System |
|
|
275 | (1) |
|
A.7.2 Find Orientation of the System |
|
|
275 | (1) |
|
|
276 | (3) |
|
|
279 | (8) |
|
A.7.5 Mapping Other Quantities |
|
|
287 | (1) |
|
A.7.6 Intersection Calculation |
|
|
287 | (1) |
|
A.8 Rezone Method - Boundary Cases |
|
|
288 | (7) |
|
A.8.1 Constant R, Constant Z, and Slide Angle |
|
|
288 | (4) |
|
|
292 | (1) |
|
A.8.3 Center of Mass Case |
|
|
293 | (2) |
|
A.9 The Vertex, Midpoint, Point 8, and Velocity Passes |
|
|
295 | (3) |
|
|
295 | (2) |
|
|
297 | (1) |
|
|
297 | (1) |
|
|
298 | (1) |
|
A.9.5 The Velocity Adjustment Pass |
|
|
298 | (1) |
|
|
298 | (2) |
|
|
299 | (1) |
|
|
300 | (1) |
|
A.11 Completing the Rezone |
|
|
300 | (1) |
|
|
301 | (1) |
|
|
301 | (1) |
|
|
301 | (1) |
|
A.11.4 New q Terms (Artificial Viscosity) |
|
|
301 | (1) |
|
|
301 | (1) |
|
|
301 | (1) |
|
|
302 | (1) |
|
|
302 | (3) |
|
A.15 Directed Kinetic Energy |
|
|
305 | (2) |
|
|
307 | (2) |
Appendix B Eigenvalue Calculations |
|
309 | (50) |
|
|
310 | (3) |
|
|
313 | (1) |
|
B.3 Group-Collapse Coarse Mesh Re-balance |
|
|
314 | (4) |
|
B.4 Whole System Group-wise Re-balance |
|
|
318 | (4) |
|
B.5 Variable Convergence Precision and Iteration Strategies |
|
|
322 | (2) |
|
B.6 Test Problem and Results |
|
|
324 | (14) |
|
|
338 | (8) |
|
B.8 Implementation of a Re-balance Acceleration |
|
|
346 | (10) |
|
|
356 | (1) |
|
|
356 | (3) |
Appendix C Hugoniot Data and JWL EOS |
|
359 | (8) |
Appendix D Supplementary Materials |
|
367 | (2) |
Index |
|
369 | |