Preface |
|
xi | |
What is Computational Physics? |
|
xiii | |
|
Part I Stochastic Methods |
|
|
1 | (146) |
|
|
3 | (14) |
|
1.1 Definition of Random Numbers |
|
|
3 | (1) |
|
1.2 Congruential RNG (Multiplicative) |
|
|
4 | (3) |
|
1.3 Lagged Fibonacci RNG (Additive) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
9 | (2) |
|
1.6 Nonuniform Distributions |
|
|
11 | (6) |
|
2 Random-Geometrical Models |
|
|
17 | (38) |
|
|
17 | (1) |
|
2.2 The Sol--Gel Transition |
|
|
17 | (2) |
|
2.3 The Percolation Model |
|
|
19 | (15) |
|
|
34 | (8) |
|
|
42 | (8) |
|
|
50 | (5) |
|
|
55 | (12) |
|
3.1 Classical Statistical Mechanics |
|
|
55 | (4) |
|
|
59 | (8) |
|
|
67 | (18) |
|
4.1 Computation of Integrals |
|
|
67 | (1) |
|
|
68 | (3) |
|
4.3 Hard Spheres in a Box |
|
|
71 | (3) |
|
|
74 | (2) |
|
|
76 | (3) |
|
4.6 Glauber Dynamics (Heat Bath Dynamics) |
|
|
79 | (1) |
|
4.7 Binary Mixtures and Kawasaki Dynamics |
|
|
80 | (1) |
|
|
81 | (2) |
|
|
83 | (1) |
|
4.10 Application to Interfaces |
|
|
83 | (2) |
|
|
85 | (8) |
|
5.1 Temporal Correlations |
|
|
85 | (2) |
|
5.2 Decorrelated Configurations |
|
|
87 | (1) |
|
|
87 | (2) |
|
|
89 | (1) |
|
5.5 First-Order Transitions |
|
|
90 | (3) |
|
|
93 | (7) |
|
|
93 | (1) |
|
6.2 The Kasteleyn and Fortuin Theorem |
|
|
94 | (1) |
|
6.3 Coniglio--Klein Clusters |
|
|
95 | (1) |
|
6.4 Swendsen--Wang Algorithm |
|
|
96 | (1) |
|
|
97 | (1) |
|
6.6 Continuous Degrees of Freedom: The n-Vector Model |
|
|
98 | (2) |
|
|
100 | (5) |
|
7.1 Broad Histogram Method |
|
|
101 | (1) |
|
7.2 Flat Histogram Method |
|
|
102 | (1) |
|
|
103 | (2) |
|
|
105 | (7) |
|
8.1 Real Space Renormalization |
|
|
105 | (1) |
|
8.2 Renormalization and Free Energy |
|
|
105 | (1) |
|
|
106 | (1) |
|
8.4 Decimation of the One-Dimensional Ising Model |
|
|
107 | (2) |
|
|
109 | (2) |
|
8.6 Monte Carlo Renormalization Group |
|
|
111 | (1) |
|
9 Learning and Optimizing |
|
|
112 | (10) |
|
|
112 | (2) |
|
9.2 Boltzmann Machine Learning |
|
|
114 | (5) |
|
|
119 | (3) |
|
|
122 | (5) |
|
|
122 | (2) |
|
|
124 | (1) |
|
10.3 Domain Decomposition |
|
|
125 | (2) |
|
11 Nonequilibrium Systems |
|
|
127 | (20) |
|
11.1 Directed Percolation and Gillespie Algorithms |
|
|
127 | (6) |
|
|
133 | (4) |
|
|
137 | (10) |
|
Part II Molecular Dynamics |
|
|
147 | (85) |
|
12 Basic Molecular Dynamics |
|
|
149 | (8) |
|
|
149 | (1) |
|
|
150 | (2) |
|
|
152 | (1) |
|
|
153 | (1) |
|
|
154 | (3) |
|
13 Optimizing Molecular Dynamics |
|
|
157 | (4) |
|
|
158 | (1) |
|
|
158 | (3) |
|
14 Dynamics of Composed Particles |
|
|
161 | (8) |
|
14.1 Lagrange Multipliers |
|
|
161 | (2) |
|
|
163 | (6) |
|
|
169 | (8) |
|
|
169 | (2) |
|
15.2 Particle-Mesh Method |
|
|
171 | (4) |
|
15.3 Reaction Field Method |
|
|
175 | (2) |
|
|
177 | (10) |
|
|
178 | (1) |
|
|
179 | (1) |
|
16.3 Nose-Hoover Thermostat |
|
|
179 | (4) |
|
|
183 | (1) |
|
|
184 | (1) |
|
16.6 Parrinello--Rahman Barostat |
|
|
185 | (2) |
|
17 Inelastic Collisions in Molecular Dynamics |
|
|
187 | (5) |
|
17.1 Restitution Coefficient |
|
|
187 | (1) |
|
|
188 | (2) |
|
17.3 Coulomb Friction and Discrete Element Method |
|
|
190 | (2) |
|
18 Event-Driven Molecular Dynamics |
|
|
192 | (10) |
|
18.1 Event-Driven Procedure |
|
|
192 | (2) |
|
|
194 | (1) |
|
18.3 Collision with Perfect Slip |
|
|
195 | (1) |
|
18.4 Collision with Rotation |
|
|
196 | (1) |
|
18.5 Inelastic Collisions |
|
|
197 | (1) |
|
|
198 | (4) |
|
19 Nonspherical Particles |
|
|
202 | (6) |
|
19.1 Ellipsoidal Particles |
|
|
202 | (3) |
|
|
205 | (1) |
|
|
205 | (3) |
|
|
208 | (7) |
|
20.1 One-Dimensional Contact |
|
|
208 | (4) |
|
20.2 Generalization to N Particles |
|
|
212 | (3) |
|
|
215 | (7) |
|
21.1 Lattice Gas Automata |
|
|
215 | (1) |
|
21.2 Lattice Boltzmann Method |
|
|
215 | (3) |
|
21.3 Stochastic Rotation Dynamics |
|
|
218 | (1) |
|
21.4 Direct Simulation Monte Carlo |
|
|
219 | (1) |
|
21.5 Dissipative Particle Dynamics |
|
|
220 | (1) |
|
21.6 Smoothed Particle Hydrodynamics |
|
|
221 | (1) |
|
|
222 | (10) |
|
|
222 | (3) |
|
22.2 Implementation of Wave Functions |
|
|
225 | (1) |
|
22.3 Born--Oppenheimer Approximation |
|
|
225 | (1) |
|
22.4 Hohenberg--Kohn Theorems |
|
|
226 | (2) |
|
22.5 Kohn--Sham Approximation |
|
|
228 | (1) |
|
22.6 Hellmann--Feynman Theorem |
|
|
229 | (1) |
|
22.7 Car--Parrinello Method |
|
|
230 | (2) |
References |
|
232 | (20) |
Index |
|
252 | |