Preface |
|
xi | |
|
|
1 | (17) |
|
1.1 Fundamental Concepts and Motivating Example |
|
|
1 | (3) |
|
1.2 Probability Philosophies |
|
|
4 | (1) |
|
|
5 | (3) |
|
1.4 Definition of Probability |
|
|
8 | (2) |
|
|
10 | (3) |
|
1.5.1 Simple Sample Spaces |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.6 Probability of a Union of Events |
|
|
13 | (1) |
|
1.7 Conditional Probability |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
16 | (2) |
|
|
18 | (30) |
|
|
18 | (1) |
|
2.2 The Probability Density Function |
|
|
18 | (5) |
|
2.2.1 Discrete Distributions |
|
|
18 | (2) |
|
2.2.2 Continuous Distributions |
|
|
20 | (2) |
|
2.2.3 Mixed Distributions |
|
|
22 | (1) |
|
2.3 The Cumulative Distribution and Quantile Functions |
|
|
23 | (2) |
|
2.4 The Characteristic Function |
|
|
25 | (2) |
|
2.5 Bivariate Distributions |
|
|
27 | (1) |
|
2.6 Independent and Exchangeable Random Variables |
|
|
28 | (2) |
|
2.7 Conditional Probability Distributions |
|
|
30 | (2) |
|
2.8 Functions of a Random Variable |
|
|
32 | (2) |
|
2.9 Functions of Two or More Random Variables |
|
|
34 | (2) |
|
2.10 Measures of Location |
|
|
36 | (3) |
|
2.11 Measures of Dispersion |
|
|
39 | (2) |
|
|
41 | (1) |
|
2.13 Measures of Direction |
|
|
42 | (2) |
|
2.14 Measures of Association |
|
|
44 | (1) |
|
2.15 Conditional Expected Value and Variance |
|
|
44 | (1) |
|
2.16 Probability Inequalities |
|
|
45 | (1) |
|
2.17 Convergence of Random Variables |
|
|
46 | (2) |
|
3 Statistical Distributions |
|
|
48 | (38) |
|
|
48 | (1) |
|
3.2 MATLAB Support for Distributions |
|
|
48 | (1) |
|
3.3 Discrete Distributions |
|
|
49 | (13) |
|
3.3.1 Bernoulli Distribution |
|
|
49 | (1) |
|
3.3.2 Binomial Distribution |
|
|
50 | (3) |
|
3.3.3 Negative Binomial Distribution |
|
|
53 | (1) |
|
3.3.4 Multinomial Distribution |
|
|
54 | (2) |
|
3.3.5 Hypergeometric Distribution |
|
|
56 | (3) |
|
3.3.6 Poisson Distribution |
|
|
59 | (3) |
|
3.4 Continuous Distributions |
|
|
62 | (24) |
|
3.4.1 Normal or Gaussian Distribution |
|
|
62 | (3) |
|
3.4.2 Stable Distributions |
|
|
65 | (2) |
|
3.4.3 Rayleigh Distribution |
|
|
67 | (2) |
|
3.4.4 Lognormal Distribution |
|
|
69 | (1) |
|
|
70 | (2) |
|
3.4.6 Exponential Distribution |
|
|
72 | (2) |
|
3.4.7 Weibull Distribution |
|
|
74 | (2) |
|
|
76 | (2) |
|
3.4.9 Generalized Extreme Value Distribution |
|
|
78 | (2) |
|
3.4.10 Bivariate Gaussian Distribution |
|
|
80 | (1) |
|
3.4.11 Directional Distributions |
|
|
81 | (5) |
|
4 Characterization of Data |
|
|
86 | (56) |
|
|
86 | (1) |
|
4.2 Estimators of Location |
|
|
86 | (5) |
|
4.3 Estimators of Dispersion |
|
|
91 | (2) |
|
|
93 | (2) |
|
4.5 Estimators of Direction |
|
|
95 | (5) |
|
4.6 Estimators of Association |
|
|
100 | (1) |
|
|
101 | (5) |
|
4.7.1 The Laws of Large Numbers |
|
|
101 | (1) |
|
4.7.2 Classic Central Limit Theorems |
|
|
102 | (2) |
|
4.7.3 Other Central Limit Theorems |
|
|
104 | (1) |
|
|
105 | (1) |
|
4.8 Exploratory Data Analysis Tools |
|
|
106 | (16) |
|
4.8.1 The Probability Integral Transform |
|
|
106 | (1) |
|
4.8.2 The Histogram and Empirical CDF |
|
|
107 | (4) |
|
4.8.3 Kernel Density Estimators |
|
|
111 | (4) |
|
4.8.4 The Percent-Percent and Quantile-Quantile Plots |
|
|
115 | (5) |
|
|
120 | (2) |
|
4.9 Sampling Distributions |
|
|
122 | (13) |
|
4.9.1 Chi Square Distributions |
|
|
122 | (3) |
|
4.9.2 Student's t Distributions |
|
|
125 | (3) |
|
4.9.3 The F Distributions |
|
|
128 | (2) |
|
4.9.4 The Correlation Coefficient |
|
|
130 | (5) |
|
4.10 Distributions for Order Statistics |
|
|
135 | (5) |
|
4.10.1 Distribution of a Single Order Statistic |
|
|
135 | (2) |
|
4.10.2 Distribution of the Sample Median |
|
|
137 | (1) |
|
4.10.3 Joint Distribution of a Pair of Order Statistics |
|
|
138 | (1) |
|
4.10.4 Distribution of the Interquartile Range |
|
|
138 | (2) |
|
4.11 Joint Distribution of the Sample Mean and Sample Variance |
|
|
140 | (2) |
|
5 Point, Interval, and Ratio Estimators |
|
|
142 | (27) |
|
|
142 | (1) |
|
|
142 | (12) |
|
|
142 | (1) |
|
5.2.2 Unbiased Estimators |
|
|
143 | (1) |
|
5.2.3 Efficiency and the Cramer-Rao Lower Bound |
|
|
144 | (3) |
|
|
147 | (1) |
|
5.2.5 Sufficient Statistics |
|
|
148 | (4) |
|
5.2.6 Statistical Decision Theory |
|
|
152 | (2) |
|
5.3 Point Estimation: Method of Moments |
|
|
154 | (1) |
|
5.4 Point Estimation: Maximum Likelihood Estimator |
|
|
155 | (5) |
|
5.5 Interval Estimation: Confidence and Tolerance Intervals |
|
|
160 | (6) |
|
|
166 | (3) |
|
|
169 | (45) |
|
|
169 | (2) |
|
6.2 Theory of Hypothesis Tests I |
|
|
171 | (6) |
|
6.3 Parametric Hypothesis Tests |
|
|
177 | (18) |
|
|
177 | (1) |
|
|
178 | (8) |
|
|
186 | (2) |
|
|
188 | (1) |
|
6.3.5 Bartlett's M Test for Homogeneity of Variance |
|
|
189 | (1) |
|
6.3.6 The Correlation Coefficient |
|
|
190 | (2) |
|
6.3.7 Analysis of Variance |
|
|
192 | (2) |
|
6.3.8 Sample Size and Power |
|
|
194 | (1) |
|
6.4 Hypothesis Tests and Confidence Intervals |
|
|
195 | (1) |
|
6.5 Theory of Hypothesis Tests II |
|
|
196 | (14) |
|
6.5.1 Likelihood Ratio Tests for Simple Hypotheses |
|
|
197 | (1) |
|
6.5.2 Uniformly Most Powerful Tests |
|
|
198 | (2) |
|
6.5.3 Likelihood Ratio Tests for Composite Hypotheses |
|
|
200 | (7) |
|
|
207 | (1) |
|
|
208 | (2) |
|
6.6 Multiple Hypothesis Tests |
|
|
210 | (4) |
|
|
214 | (33) |
|
|
214 | (1) |
|
7.2 Goodness-of-Fit Tests |
|
|
214 | (17) |
|
7.2.1 Likelihood Ratio Test for the Multinomial Distribution |
|
|
214 | (5) |
|
7.2.2 Pearson's x2 Test for Goodness-of-Fit |
|
|
219 | (3) |
|
7.2.3 Kolmogorov-Smirnov Test |
|
|
222 | (6) |
|
7.2.4 Cramer-von Mises Tests |
|
|
228 | (2) |
|
|
230 | (1) |
|
|
231 | (14) |
|
7.3.1 Properties of Ranks |
|
|
231 | (1) |
|
|
232 | (3) |
|
|
235 | (2) |
|
|
237 | (3) |
|
7.3.5 Ansari-Bradley Test |
|
|
240 | (1) |
|
7.3.6 Spearman Rank Correlation Test |
|
|
241 | (1) |
|
|
242 | (1) |
|
7.3.8 Nonparametric ANOVA |
|
|
243 | (2) |
|
|
245 | (2) |
|
|
247 | (34) |
|
|
247 | (1) |
|
|
247 | (20) |
|
8.2.1 The Bootstrap Distribution |
|
|
247 | (4) |
|
8.2.2 Bootstrap Parameter Estimation |
|
|
251 | (4) |
|
8.2.3 Bootstrap Confidence Intervals |
|
|
255 | (4) |
|
8.2.4 Bootstrap Hypothesis Tests |
|
|
259 | (6) |
|
8.2.5 Bias Correction for Goodness-of-Fit Tests |
|
|
265 | (2) |
|
|
267 | (10) |
|
|
267 | (1) |
|
8.3.2 One-Sample Test for a Location Parameter |
|
|
268 | (2) |
|
8.3.3 Two-Sample Test for a Location Parameter |
|
|
270 | (4) |
|
8.3.4 Two-Sample Test for Paired Data |
|
|
274 | (1) |
|
8.3.5 Two-Sample Test for Dispersion |
|
|
275 | (2) |
|
|
277 | (4) |
|
|
281 | (63) |
|
|
281 | (2) |
|
9.2 Statistical Basis for Linear Regression |
|
|
283 | (3) |
|
9.3 Numerical Considerations |
|
|
286 | (3) |
|
9.4 Statistical Inference in Linear Regression |
|
|
289 | (6) |
|
9.4.1 Analysis of Variance |
|
|
289 | (2) |
|
9.4.2 Hypothesis Testing on the Regression Estimates |
|
|
291 | (1) |
|
9.4.3 Confidence Intervals |
|
|
292 | (2) |
|
9.4.4 The Runs and Durbin-Watson Tests |
|
|
294 | (1) |
|
9.5 Linear Regression in Practice |
|
|
295 | (21) |
|
9.5.1 Assessing the Results |
|
|
295 | (3) |
|
|
298 | (18) |
|
9.6 Robust and Bounded Influence Regression |
|
|
316 | (19) |
|
|
317 | (10) |
|
9.6.2 Bounded Influence Estimators |
|
|
327 | (8) |
|
9.7 Advanced Linear Regression |
|
|
335 | (9) |
|
9.7.1 Errors in Variables |
|
|
335 | (1) |
|
9.7.2 Shrinkage Estimators |
|
|
336 | (4) |
|
9.7.3 Logistic Regression |
|
|
340 | (4) |
|
10 Multivariate Statistics |
|
|
344 | (47) |
|
10.1 Concepts and Notation |
|
|
344 | (2) |
|
10.2 The Multivariate Gaussian Distribution |
|
|
346 | (4) |
|
10.2.1 Derivation of the Multivariate Gaussian Distribution |
|
|
346 | (1) |
|
10.2.2 Properties of the MV Gaussian Distribution |
|
|
347 | (1) |
|
10.2.3 The Sample Mean Vector and Sample Covariance Matrix |
|
|
348 | (1) |
|
10.2.4 The Complex Multivariate Gaussian Distribution |
|
|
349 | (1) |
|
10.3 Hotelling's T2 Tests |
|
|
350 | (4) |
|
10.4 Multivariate Analysis of Variance |
|
|
354 | (8) |
|
10.5 Hypothesis Tests on the Covariance Matrix |
|
|
362 | (4) |
|
|
363 | (1) |
|
10.5.2 Comparing Covariance Matrices |
|
|
364 | (1) |
|
10.5.3 Test of Independence |
|
|
365 | (1) |
|
10.6 Multivariate Regression |
|
|
366 | (5) |
|
10.7 Canonical Correlation |
|
|
371 | (2) |
|
10.8 Empirical Orthogonal Functions |
|
|
373 | (18) |
|
|
374 | (3) |
|
10.8.2 Choosing the Number of Eofs |
|
|
377 | (1) |
|
|
378 | (7) |
|
10.8.4 Empirical Orthogonal Function Regression |
|
|
385 | (6) |
|
|
391 | (38) |
|
|
392 | (1) |
|
11.2 Statistical Concepts for Compositions |
|
|
392 | (13) |
|
11.2.1 Definitions and Principles |
|
|
392 | (3) |
|
11.2.2 Compositional Geometry |
|
|
395 | (5) |
|
11.2.3 Compositional Transformations |
|
|
400 | (5) |
|
11.3 Exploratory Compositional Data Analysis |
|
|
405 | (24) |
Appendix 11A MATLAB Functions to Produce Ternary Diagrams |
|
429 | (6) |
References |
|
435 | (9) |
Index |
|
444 | |