Preface to the Third Edition |
|
xix | |
Preface to the Second Edition |
|
xxi | |
Preface to the First Edition |
|
xxv | |
Chapter 1 Introduction |
|
|
1.1 What Is Computational Statistics? |
|
|
1 | (2) |
|
1.2 An Overview of the Book |
|
|
3 | (3) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (3) |
|
Computational Statistics Toolbox |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (2) |
Chapter 2 Probability Concepts |
|
|
|
11 | (1) |
|
|
12 | (5) |
|
|
12 | (2) |
|
|
14 | (2) |
|
|
16 | (1) |
|
2.3 Conditional Probability and Independence |
|
|
17 | (4) |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (2) |
|
|
21 | (3) |
|
|
21 | (2) |
|
|
23 | (1) |
|
|
23 | (1) |
|
|
24 | (24) |
|
|
24 | (2) |
|
|
26 | (3) |
|
|
29 | (1) |
|
|
30 | (4) |
|
|
34 | (2) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
38 | (2) |
|
|
40 | (2) |
|
|
42 | (1) |
|
|
43 | (4) |
|
Multivariate t Distribution |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
49 | (2) |
|
|
51 | (4) |
Chapter 3 Sampling Concepts |
|
|
|
55 | (1) |
|
3.2 Sampling Terminology and Concepts |
|
|
55 | (8) |
|
Sample Mean and Sample Variance |
|
|
57 | (1) |
|
|
58 | (2) |
|
|
60 | (3) |
|
3.3 Sampling Distributions |
|
|
63 | (2) |
|
|
65 | (8) |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
67 | (1) |
|
Maximum Likelihood Estimation |
|
|
68 | (3) |
|
|
71 | (2) |
|
3.5 Empirical Distribution Function |
|
|
73 | (5) |
|
|
74 | (4) |
|
|
78 | (1) |
|
|
79 | (1) |
|
|
80 | (3) |
Chapter 4 Generating Random Variables |
|
|
|
83 | (1) |
|
4.2 General Techniques for Generating Random Variables |
|
|
83 | (11) |
|
|
83 | (3) |
|
|
86 | (4) |
|
Acceptance-Rejection Method |
|
|
90 | (4) |
|
4.3 Generating Continuous Random Variables |
|
|
94 | (12) |
|
|
94 | (1) |
|
|
94 | (2) |
|
|
96 | (1) |
|
|
97 | (2) |
|
|
99 | (2) |
|
|
101 | (2) |
|
Multivariate Student's t Distribution |
|
|
103 | (2) |
|
Generating Variates on a Sphere |
|
|
105 | (1) |
|
4.4 Generating Discrete Random Variables |
|
|
106 | (6) |
|
|
106 | (2) |
|
|
108 | (2) |
|
|
110 | (2) |
|
|
112 | (2) |
|
|
114 | (1) |
|
|
115 | (2) |
Chapter 5 Exploratory Data Analysis |
|
|
|
117 | (2) |
|
5.2 Exploring Univariate Data |
|
|
119 | (24) |
|
|
119 | (3) |
|
|
122 | (2) |
|
Quantile-Based Plots - Continuous Distributions |
|
|
124 | (8) |
|
Quantile Plots - Discrete Distributions |
|
|
132 | (6) |
|
|
138 | (5) |
|
5.3 Exploring Bivariate and Trivariate Data |
|
|
143 | (13) |
|
|
145 | (2) |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
149 | (6) |
|
|
155 | (1) |
|
5.4 Exploring Multi-Dimensional Data |
|
|
156 | (22) |
|
|
157 | (2) |
|
|
159 | (5) |
|
|
164 | (3) |
|
|
167 | (5) |
|
|
172 | (6) |
|
|
178 | (2) |
|
|
180 | (2) |
|
|
182 | (3) |
Chapter 6 Finding Structure |
|
|
|
185 | (1) |
|
|
186 | (2) |
|
6.3 Principal Component Analysis |
|
|
188 | (4) |
|
6.4 Projection Pursuit EDA |
|
|
192 | (10) |
|
|
195 | (1) |
|
|
196 | (1) |
|
|
197 | (5) |
|
6.5 Independent Component Analysis |
|
|
202 | (7) |
|
|
209 | (4) |
|
6.7 Nonlinear Dimensionality Reduction |
|
|
213 | (9) |
|
|
214 | (3) |
|
Isometric Feature Mapping (ISOMAP) |
|
|
217 | (5) |
|
|
222 | (2) |
|
|
224 | (3) |
|
|
227 | (2) |
Chapter 7 Monte Carlo Methods for Inferential Statistics |
|
|
|
229 | (1) |
|
7.2 Classical Inferential Statistics |
|
|
230 | (11) |
|
|
230 | (9) |
|
|
239 | (2) |
|
7.3 Monte Carlo Methods for Inferential Statistics |
|
|
241 | (11) |
|
Basic Monte Carlo Procedure |
|
|
242 | (1) |
|
Monte Carlo Hypothesis Testing |
|
|
243 | (5) |
|
Monte Carlo Assessment of Hypothesis Testing |
|
|
248 | (4) |
|
|
252 | (12) |
|
General Bootstrap Methodology |
|
|
252 | (2) |
|
Bootstrap Estimate of Standard Error |
|
|
254 | (3) |
|
Bootstrap Estimate of Bias |
|
|
257 | (1) |
|
Bootstrap Confidence Intervals |
|
|
258 | (6) |
|
|
264 | (1) |
|
|
265 | (1) |
|
|
266 | (3) |
Chapter 8 Data Partitioning |
|
|
|
269 | (1) |
|
|
270 | (7) |
|
|
277 | (8) |
|
8.4 Better Bootstrap Confidence Intervals |
|
|
285 | (4) |
|
8.5 Jackknife-After-Bootstrap |
|
|
289 | (3) |
|
|
292 | (1) |
|
|
293 | (1) |
|
|
293 | (4) |
Chapter 9 Probability Density Estimation |
|
|
|
297 | (2) |
|
|
299 | (19) |
|
|
299 | (7) |
|
|
306 | (1) |
|
|
307 | (5) |
|
Averaged Shifted Histograms |
|
|
312 | (6) |
|
9.3 Kernel Density Estimation |
|
|
318 | (7) |
|
Univariate Kernel Estimators |
|
|
318 | (5) |
|
Multivariate Kernel Estimators |
|
|
323 | (2) |
|
|
325 | (19) |
|
Univariate Finite Mixtures |
|
|
327 | (2) |
|
Visualizing Finite Mixtures |
|
|
329 | (2) |
|
Multivariate Finite Mixtures |
|
|
331 | (3) |
|
EM Algorithm for Estimating the Parameters |
|
|
334 | (5) |
|
|
339 | (5) |
|
9.5 Generating Random Variables |
|
|
344 | (8) |
|
|
352 | (1) |
|
|
352 | (2) |
|
|
354 | (5) |
Chapter 10 Supervised Learning |
|
|
|
359 | (2) |
|
10.2 Bayes Decision Theory |
|
|
361 | (15) |
|
Estimating Class-Conditional Probabilities: Parametric Method |
|
|
363 | (2) |
|
|
365 | (1) |
|
Estimating Class-Conditional Probabilities: Nonparametric |
|
|
365 | (2) |
|
|
367 | (5) |
|
Likelihood Ratio Approach |
|
|
372 | (4) |
|
10.3 Evaluating the Classifier |
|
|
376 | (11) |
|
|
376 | (2) |
|
|
378 | (3) |
|
Receiver Operating Characteristic (ROC) Curve |
|
|
381 | (6) |
|
10.4 Classification Trees |
|
|
387 | (23) |
|
|
390 | (4) |
|
|
394 | (4) |
|
|
398 | (9) |
|
|
407 | (3) |
|
10.5 Combining Classifiers |
|
|
410 | (9) |
|
|
410 | (3) |
|
|
413 | (3) |
|
|
416 | (2) |
|
|
418 | (1) |
|
10.6 Nearest Neighbor Classifier |
|
|
419 | (3) |
|
10.7 Support Vector Machines |
|
|
422 | (11) |
|
Maximal Margin Classifier |
|
|
422 | (4) |
|
Support Vector Classifier |
|
|
426 | (1) |
|
|
427 | (6) |
|
|
433 | (3) |
|
|
436 | (1) |
|
|
437 | (4) |
Chapter 11 Unsupervised Learning |
|
|
|
441 | (1) |
|
11.2 Measures of Distance |
|
|
442 | (2) |
|
11.3 Hierarchical Clustering |
|
|
444 | (8) |
|
|
452 | (3) |
|
11.5 Model-Based Clustering |
|
|
455 | (13) |
|
Finite Mixture Models and the EM Algorithm |
|
|
456 | (4) |
|
Model-Based Agglomerative Clustering |
|
|
460 | (3) |
|
Bayesian Information Criterion |
|
|
463 | (1) |
|
Model-Based Clustering Procedure |
|
|
463 | (5) |
|
11.6 Assessing Cluster Results |
|
|
468 | (7) |
|
|
468 | (1) |
|
|
469 | (3) |
|
Other Methods for Evaluating Clusters |
|
|
472 | (3) |
|
|
475 | (2) |
|
|
477 | (1) |
|
|
478 | (3) |
Chapter 12 Parametric Models |
|
|
|
481 | (6) |
|
12.2 Spline Regression Models |
|
|
487 | (5) |
|
|
492 | (6) |
|
|
492 | (4) |
|
Interpreting the Model Parameters |
|
|
496 | (2) |
|
12.4 Generalized Linear Models |
|
|
498 | (19) |
|
|
499 | (5) |
|
|
504 | (5) |
|
|
509 | (8) |
|
12.5 Model Selection and Regularization |
|
|
517 | (15) |
|
|
518 | (1) |
|
|
519 | (2) |
|
|
521 | (6) |
|
Lasso-Least Absolute Shrinkage and Selection Operator |
|
|
527 | (2) |
|
|
529 | (3) |
|
12.6 Partial Least Squares Regression |
|
|
532 | (6) |
|
Principal Component Regression |
|
|
533 | (2) |
|
Partial Least Squares Regression |
|
|
535 | (3) |
|
|
538 | (2) |
|
|
540 | (1) |
|
|
540 | (3) |
Chapter 13 Nonparametric Models |
|
|
|
543 | (1) |
|
13.2 Some Smoothing Methods |
|
|
544 | (14) |
|
|
545 | (2) |
|
|
547 | (1) |
|
|
548 | (1) |
|
Local Polynomial Regression - Loess |
|
|
549 | (6) |
|
|
555 | (3) |
|
|
558 | (7) |
|
Nadaraya-Watson Estimator |
|
|
561 | (1) |
|
Local Linear Kernel Estimator |
|
|
562 | (3) |
|
|
565 | (7) |
|
|
565 | (2) |
|
Reinsch Method for Finding Smoothing Splines |
|
|
567 | (2) |
|
Values for a Cubic Smoothing Spline |
|
|
569 | (1) |
|
Weighted Smoothing Spline |
|
|
570 | (2) |
|
13.5 Nonparametric Regression - Other Details |
|
|
572 | (9) |
|
Choosing the Smoothing Parameter |
|
|
572 | (5) |
|
Estimation of the Residual Variance |
|
|
577 | (1) |
|
|
577 | (4) |
|
|
581 | (10) |
|
Growing a Regression Tree |
|
|
583 | (2) |
|
Pruning a Regression Tree |
|
|
585 | (2) |
|
|
587 | (4) |
|
|
591 | (6) |
|
13.8 Multivariate Adaptive Regression Splines |
|
|
597 | (8) |
|
|
605 | (3) |
|
|
608 | (2) |
|
|
610 | (3) |
Chapter 14 Markov Chain Monte Carlo Methods |
|
|
|
613 | (1) |
|
|
614 | (4) |
|
|
614 | (1) |
|
|
615 | (2) |
|
|
617 | (1) |
|
|
618 | (1) |
|
14.3 Metropolis-Hastings Algorithms |
|
|
618 | (12) |
|
Metropolis-Hastings Sampler |
|
|
619 | (2) |
|
|
621 | (5) |
|
|
626 | (1) |
|
Autoregressive Generating Density |
|
|
627 | (3) |
|
|
630 | (10) |
|
14.5 Convergence Monitoring |
|
|
640 | (7) |
|
|
642 | (3) |
|
|
645 | (2) |
|
|
647 | (1) |
|
|
648 | (1) |
|
|
649 | (4) |
Appendix A MATLAB® Basics |
|
|
|
653 | (2) |
|
A.2 Getting Help and Other Documentation |
|
|
655 | (1) |
|
A.3 Data Import and Export |
|
|
656 | (3) |
|
Data Import and Export in Base MATLAB |
|
|
656 | (2) |
|
Data Import and Export with the Statistics Toolbox |
|
|
658 | (1) |
|
|
659 | (6) |
|
Data Objects in Base MATLAB |
|
|
659 | (3) |
|
|
662 | (3) |
|
Object-Oriented Programming |
|
|
665 | (1) |
|
|
665 | (5) |
|
File and Workspace Management |
|
|
666 | (1) |
|
|
667 | (2) |
|
|
669 | (1) |
|
|
670 | (7) |
|
|
670 | (3) |
|
|
673 | (1) |
|
|
674 | (1) |
|
|
675 | (1) |
|
|
675 | (2) |
|
A.7 Summary and Further Reading |
|
|
677 | (4) |
Appendix B Projection Pursuit Indexes |
|
|
|
681 | (1) |
|
|
682 | (1) |
|
|
682 | (1) |
|
|
683 | (2) |
Appendix C Data Sets |
|
|
|
685 | (1) |
|
|
685 | (10) |
Appendix D Notation |
|
|
|
695 | (1) |
|
|
696 | (1) |
|
D.3 Functions and Distributions |
|
|
696 | (1) |
|
|
696 | (1) |
|
|
697 | (2) |
References |
|
699 | (22) |
Subject Index |
|
721 | |