Muutke küpsiste eelistusi

E-raamat: Computational Transport Phenomena for Engineering Analyses

(University of Alabama, Birmingham, USA), (Louisiana State University, Baton Rouge, USA), (SECA, Inc., Carson City, Nevada, USA), (National Space Organization, Hsinchu, Taiwan)
  • Formaat: 530 pages
  • Ilmumisaeg: 03-Jun-2009
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781439882054
  • Formaat - PDF+DRM
  • Hind: 93,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 530 pages
  • Ilmumisaeg: 03-Jun-2009
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781439882054

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Although computer technology has dramatically improved the analysis of complex transport phenomena, the methodology has yet to be effectively integrated into engineering curricula. The huge volume of literature associated with the wide variety of transport processes cannot be appreciated or mastered without using innovative tools to allow comprehension and study of these processes. Connecting basic principles with numerical methodology for solving the conservations laws, Computational Transport Phenomena for Engineering Analyses presents the topic in terms of modern engineering analysis. The book includes a production quality computer source code for expediting and illustrating analyses of mass, momentum, and energy transport.



The text covers transport phenomena with examples that extend from basic empirical analyses to complete numerical analyses. It includes a computational transport phenomena (CTP) code written in Fortran and developed and owned by the authors. The code does not require a lease and can run on a PC or a supercomputer. The authors also supply the source code, allowing users to modify the code to serve their particular needs, once they are familiar with the code. Using the CTP code, grid generation and solution procedures are described and visual solution presentations are illustrated thus offering extensive coverage of the methodology for a wide range of applications.

The authors illustrate and emphasize that the very general solutions afforded by solving the unsteady, multidimensional transport equations for real multicomponent fluids describe an immense body of physical processes. Bringing together a wealth of professional and instructional experience, this book stresses a problem-solving approach that uses one set of computational and graphical tools to describe all aspects of the analysis. It provides understanding of the principles involved so that code improvements and/or use of commercial codes can be accomplished knowledgeably.
Preface xix
Authors xxiii
CHAPTER 1 Computational Transport Phenomena 1
1.1 OVERVIEW
1
1.2 TRANSPORT PHENOMENA
2
1.3 ANALYZING TRANSPORT PHENOMENA
4
1.4 A COMPUTATIONAL TOOL: THE CTP CODE
10
1.5 VERIFICATION, VALIDATION, AND GENERALIZATION
11
1.5.1 Verification
12
1.5.2 Validation
12
1.5.3 Generality
13
1.5.3.1 Example of a Simple Momentum Transport Problem
14
1.5.3.2 Simple Heat and Mass Transport Problems
23
1.5.3.3 Potential Prospects of Computational Analyses
28
1.6 SUMMARY
29
1.7 NOMENCLATURE
29
1.7.1 List of Symbols
30
1.7.1.1 English Symbols
30
1.7.1.2 Greek Symbols
31
1.7.1.3 Subscripts
32
1.7.1.4 Superscripts
32
REFERENCES
32
CHAPTER 2 The Equations of Change 35
2.1 INTRODUCTION
35
2.2 DERIVATION OF THE CONTINUITY EQUATION
37
2.3 DERIVATION OF THE SPECIES CONTINUITY EQUATION
40
2.3.1 Binary Systems
43
2.3.2 Multicomponent Systems
46
2.3.3 Generalized Chemical Reactions and Simultaneous Reaction Rates
46
2.4 DERIVATION OF THE EQUATION OF MOTION
47
2.4.1 Forces and Stresses
48
2.4.2 Derivation of the x-Component of the Equation of Motion
51
2.4.3 Rate of Deformation
54
2.4.4 Relationship between Stress and the Rate of Strain
59
2.4.5 Navier-Stokes Equations
64
2.5 DERIVATION OF THE GENERAL ENERGY EQUATION
66
2.6 NON-NEWTONIAN FLUIDS
74
2.7 GENERAL PROPERTY BALANCE
78
2.8 ANALYTICAL AND APPROXIMATE SOLUTIONS FOR THE EQUATIONS OF CHANGE
83
2.8.1 Introduction
83
2.8.2 One-Dimensional Transport and Wall Functions
87
2.8.2.1 Fully Developed Transport in a Tube
87
2.8.2.2 Wall-Functions for Momentum, Energy, and Mass Transfer
91
2.8.3 Reacting Flows in Porous Media and Darcy's Law
96
2.8.4 Simultaneous Momentum, Heat, and Mass Transfer in the Boundary Layer
105
2.9 SUMMARY
115
2.10 NOMENCLATURE
115
2.10.1 English Symbols
115
2.10.2 Greek Symbols
118
2.10.3 Mathematical Symbols
119
2.10.4 Subscripts
119
2.10.5 Superscripts
120
2.10.6 Overstrikes
120
REFERENCES
120
CHAPTER 3 Physical Properties 123
3.1 OVERVIEW
123
3.2 REAL-FLUID THERMODYNAMICS
124
3.2.1 Thermal Equation of State
124
3.2.2 Caloric Equation of State
130
3.2.3 TEOS and CEOS for Multicomponent Fluids
133
3.2.4 Sound Speed in Multicomponent Fluids
137
3.3 CHEMICAL EQUILIBRIUM AND REACTION KINETICS
138
3.3.1 Chemical Equilibrium
138
3.3.1.1 Minimization of Gibbs' Free Energy
138
3.3.1.2 Equilibrium Constants
141
3.3.2 Finite-Rate Chemical Reactions
143
3.3.3 Generation Term in the Species Continuity Equation
146
3.4 MOLECULAR TRANSPORT PROPERTIES
156
3.4.1 Basic Molecular Transport Coefficients
156
3.4.1.1 Viscosity
157
3.4.1.2 Thermal Conductivity
160
3.4.1.3 Diffusion Coefficients
161
3.4.1.4 Surface Tension
162
3.4.2 Secondary Transport
162
3.4.3 Use of Dimensionless Transport Coefficients
166
3.5 THERMAL RADIATION PROPERTIES
167
3.5.1 Approximate Radiation Transfer Analyses
168
3.5.2 Transport Phenomena Problem Coupled with Radiation
170
3.5.3 Narrowband Models
172
3.5.3.1 Narrowband Models as a Diagnostic Tool
176
3.5.3.2 Narrowband Model Applications
177
3.5.3.3 Radiation Heat Transfer with Narrowband Models and Scattering
181
3.5.4 Validation with Optical Data
181
3.6 NOMENCLATURE
182
3.6.1 English Symbols
182
3.6.2 Greek Symbols
184
3.6.3 Mathematical Symbols
185
3.6.4 Subscripts
185
3.6.5 Superscripts
186
3.6.6 Acronyms
186
REFERENCES
187
CHAPTER 4 Turbulence Modeling Concepts 191
4.1 REYNOLDS AVERAGING AND EDDY VISCOSITY MODELS
191
4.2 TURBULENCE CHARACTERISTICS
193
4.3 REYNOLDS AND FAVRE AVERAGING
197
4.4 EDDY VISCOSITY MODELS
205
4.4.1 Reynolds Stresses and the Standard k-epsilon Model
206
4.4.2 k-ω Model
210
4.4.3 SST Model and Its Implications
210
4.4.4 Further Extensions to the k-epsilon Turbulence Model
211
4.4.5 Summary of Two-Equation Turbulence Models
213
4.5 NOMENCLATURE
213
4.5.1 English Symbols
213
4.5.2 Greek Symbols
215
4.5.3 Mathematical Symbols
216
4.5.4 Acronyms
216
APPENDIX 4.A BASIC PROBABILITY PARAMETERS
216
REFERENCES
222
CHAPTER 5 Other Turbulence Models 225
5.1 MORE COMPREHENSIVE TURBULENCE MODELS
225
5.2 DIFFERENTIAL SECOND-MOMENT CLOSURE METHODS
226
5.3 PROBABILITY DENSITY FUNCTION MODELS
229
5.3.1 PDF Description of Turbulence
230
5.3.2 Comments on Statistical Analysis of Diffusion
234
5.4 DIRECT NUMERICAL SIMULATION
234
5.5 LARGE EDDY SIMULATION
236
5.5.1 LES Methodology
237
5.5.2 LES Applications
240
5.6 LAMINAR-TO-TURBULENT TRANSITION MODELS
242
5.6.1 Linear Stability Theory
242
5.6.2 Transition Models Based on a Specified Onset Value
243
5.6.3 Transition Models with Predicted Onset
244
5.6.4 Validation Cases
245
5.6.5 Other Modeling Approaches
245
5.7 NOMENCLATURE
246
5.7.1 Greek Symbols
247
5.7.2 Mathematical Symbols
248
5.7.3 Acronyms
248
REFERENCES
248
CHAPTER 6 Computational Coordinates and Conservation Laws 251
6.1 OVERVIEW
251
6.2 COORDINATES
252
6.2.1 Coordinate Transformations
254
6.2.2 Body-Fitted Computational Coordinates
257
6.2.3 Arc Length and Coordinate Lines
258
6.2.4 Body-Fitted Coordinate Systems
259
6.3 CONSERVATION LAWS IN COMPUTATIONAL COORDINATES
261
6.3.1 Formulation of the Conservation Laws for the CTP Code
261
6.3.2 Vector Form of the CTP Conservation Equations in Cartesian Coordinates
265
6.3.3 Transforming the Vector Form of the CTP Equations
272
6.3.3.1 Transformed CNS Equations
272
6.3.3.2 Transformed CTP Equations
274
6.4 NOMENCLATURE
279
6.4.1 English Symbols
279
6.4.2 Greek Symbols
280
6.4.3 Mathematical Symbols
280
6.4.4 Acronyms
280
APPENDIX 6.A TRANSFORMED TERMS WHICH COMPLETE THE SYSTEM OF CONSERVATION LAWS
281
6.A.1 Transformation of the Diffusion Terms for u-Momentum Equation
281
6.A.2 Transformation of Source Terms in the Momentum and Energy Equations
283
6.A.3 Transformation of Remaining Velocity Derivatives
284
REFERENCES
288
CHAPTER 7 Numerical Methods for Solving Governing Equations 291
7.1 OVERVIEW
291
7.2 DENSITY-BASED AND PRESSURE-BASED METHODS
293
7.2.1 Density-Based Method
293
7.2.2 Pressure-Based Method
294
7.3 NUMERICAL METHODS
296
7.4 GRID TOPOLOGIES
297
7.5 SPACE—TIME CONSERVATION-ELEMENT/ SOLUTION-ELEMENT METHODS
303
7.6 NOMENCLATURE
306
REFERENCES
307
CHAPTER 8 The CTP Code 313
8.1 GRIDS
313
8.2 DISCRETIZED CONSERVATION EQUATIONS
316
8.3 UPWIND AND DISSIPATION SCHEMES
320
8.4 SOLUTION STRATEGY
324
8.5 TIME-MARCHING SCHEME
327
8.6 BOUNDARY CONDITIONS
328
8.6.1 Inlet Flow Boundaries
328
8.6.2 Exit Flow Boundaries
329
8.6.3 Symmetry Boundaries
330
8.6.4 Zonal Interface Boundaries
330
8.6.5 Singularity Boundaries
330
8.6.6 Wall Boundaries
331
8.7 INITIAL CONDITIONS
332
8.7.1 Reference Conditions
334
8.7.2 Normalization of Flow Variables
335
8.8 CTP CODE FEATURES
336
8.8.1 CTP Code Structure
338
8.9 USER'S GUIDE
348
8.9.1 Input Data (Fort.11) Definition
348
8.9.2 User-Defined Run-Time Modifications
365
8.9.3 Main Program Include Files (fmain01 and fmain02)
365
8.9.4 Example Subroutine Includes (fexmp01)
366
8.9.5 Restart/Output Files (in Main, DATINN, and DATOUT)
366
8.10 NOMENCLATURE
367
CHAPTER 9 Multiphase Phenomena 369
9.1 SCOPE
369
9.2 DILUTE SUSPENSIONS
371
9.3 INTERPHASE MASS TRANSFER
372
9.3.1 Interfacial Equilibrium
372
9.3.2 Two-Film Theory
373
9.3.3 Simultaneous Heat and Mass Transfer
375
9.3.4 Turbulent Film Coefficients for Mass Transfer
379
9.4 MULTIPHASE EFFECTS INCLUDED IN THE CTP CODE
385
9.4.1 Dilute Particulate Cloud Tracking
385
9.4.2 Conjugate Heat Transfer
385
9.4.3 Reacting Wall Boundary Conditions
386
9.4.4 Real-Fluid Property for Reacting Spray Simulations
386
9.5 POPULATION BALANCE MODELS
387
9.6 DENSE PARTICULATE FLOWS
394
9.6.1 Local Spatial Averaging to Describe Multiphase Flows
394
9.6.2 Models for Dense Particulate Flows
396
9.7 NOMENCLATURE
401
9.7.1 Nomenclature for Sections 9.1 through 9.4
401
9.7.1.1 English Symbols
401
9.7.1.2 Greek Symbols
402
9.7.1.3 Subscripts
402
9.7.1.4 Superscripts
402
9.7.1.5 Mathematical Symbols
403
9.7.2 Nomenclature for Section 9.5
403
9.7.2.1 English Symbols
403
9.7.2.2 Greek Symbols
403
9.7.2.3 Mathematical Symbols
403
9.7.2.4 Acronyms
404
9.7.3 Nomenclature for Section 9.6
404
9.7.3.1 English Symbols
404
9.7.3.2 Greek Symbols
404
9.7.3.3 Mathematical Symbols
405
9.7.3.4 Subscripts
405
REFERENCES
405
CHAPTER 10 Closure 409
REFERENCES
413
APPENDIX A Grid Stencils and Example Problems 415
A.1 BOUNDARY LAYER FLOW OVER A FLAT PLATE
416
A.2 DEVELOPING AND FULLY DEVELOPED PIPE FLOW
417
A.3 FLOW OVER A BACKSTEP
419
A.4 A CYLINDER IN CROSS-FLOW
420
A.5 FLOW OVER AN AIRFOIL
421
A.6 CROSS-SECTION OF A SHELL AND TUBE HEAT EXCHANGER
423
A.7 CONVERGING—DIVERGING NOZZLE FLOW
423
A.8 ORIFICE FLOW AND AN EJECTOR PUMP
425
A.9 FLOW THROUGH A PIPE ELBOW
427
A.10 FLOW THROUGH A PIPE TEE
428
A.11 FREE-SURFACE FLOW IN AN OPEN DUCT
430
A.12 FLOW IN A STIRRED-TANK
431
A.13 ADDITIONAL COMMENTS
433
A.14 NOMENCLATURE
435
REFERENCES
435
APPENDIX B Rudiments of Vector and Tensor Analysis 437
B.1 OVERVIEW
437
B.2 CARTESIAN TENSORS
438
B.2.1 Scalar, Vector, and Tensor Algebra in OCC
440
B.2.2 Scalar, Vector, and Tensor Differential Operators in OCC
444
B.2.3 Integral Expressions in OCC
446
B.3 SCALARS, VECTORS, AND TENSORS IN NONORTHOGONAL CURVILINEAR COORDINATES
447
B.3.1 Overview
447
B.3.2 Types of Coordinate Systems
448
B.3.2.1 Distances Associated with dR
450
B.3.2.2 Metric Tensor
451
B.3.2.3 Conjugate Metric Tensor
458
B.3.3 Evaluation of Base Vectors
463
B.3.3.1 Covariant and Contravariant Vectors and Tensors
464
B.3.4 Tensor Operations
465
B.3.4.1 Tensor Operations in Physical Curvilinear Coordinates
467
B.3.4.2 Vector and Tensor Operations in Orthogonal Curvilinear Coordinates (NCC)
468
B.4 VECTOR FORMS OF THE CONSERVATION LAWS
468
B.4.1 Stationary General (Physical) (Tangential) Curvilinear Coordinates
469
B.4.2 Utility of the Vector Form of the Conservation Laws
470
B.5 CONSERVATION EQUATIONS IN NONORTHOGONAL COORDINATE SYSTEMS
471
B.5.1 Continuity Equation
471
B.5.2 Momentum Equation
472
B.6 LINEAR TRANSFORMATIONS
475
B.7 SUMMARY
476
B.8 NOMENCLATURE
477
B.8.1 Greek Symbols
478
B.8.2 Subscripts
478
B.8.3 Superscripts
478
B.8.4 Mathematical Symbols
478
REFERENCES
479
APPENDIX C Fortran Primer 481
C.1 OVERVIEW
481
C.2 LOOK OF FORTRAN 77
483
C.3 OUTFITTING A PC FOR USING FORTRAN
489
Index 491
Richard C. Farmer (SECA, Inc., Carson City, Nevada, USA) (Author) , Ralph W. Pike (Louisiana State University, Baton Rouge, USA) (Author) , Gary C. Cheng (University of Alabama, Birmingham, USA) (Author) , Yen-Sen Chen (National Space Organization, Hsinchu, Taiwan) (Author)