Muutke küpsiste eelistusi

E-raamat: Computations in Algebraic Geometry with Macaulay 2

Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Systems of polynomial equations arise throughout mathematics, science, and engineering. Algebraic geometry provides powerful theoretical techniques for studying the qualitative and quantitative features of their solution sets. Re­ cently developed algorithms have made theoretical aspects of the subject accessible to a broad range of mathematicians and scientists. The algorith­ mic approach to the subject has two principal aims: developing new tools for research within mathematics, and providing new tools for modeling and solv­ ing problems that arise in the sciences and engineering. A healthy synergy emerges, as new theorems yield new algorithms and emerging applications lead to new theoretical questions. This book presents algorithmic tools for algebraic geometry and experi­ mental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. A wide range of mathematical scientists should find these expositions valuable. This includes both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all.

Arvustused

"... Fazit: das Buch ist kein Lehrbuch im traditionellen Sinn. Sicherlich ist Teil I eine gelungene Einfuhrung, wenn man schon die elementaren Grundlagen der Algebraischen oder Analytischen Geometrie kennt. In Teil II ist das Buch aber eher wie ein Tagungsband, in dem einzelne Spezialisten ihre Themen vorstellen. Hier kann man sich etwas aussuchen, denn die Artikel sind unabhangig voneinander. ... Ich habe beim Lesen viele interessante Stellen gefunden, die man beim fluchtigen Durchblattern ubersehen kann. Man muss sich Zeit nehmen, dann wird der Band wirklich zum Gewinn fur alle, die Interesse an Algebraischer Geometrie haben." S.Muller-Stach, Jahresberichte der DMV 2002, Bd. 104, Heft 4

Muu info

Springer Book Archives
Preface v
List of Contributors
xv
Part I Introducing Macaulay
2(71)
Ideals, Varieties and Macaulay 2
3(14)
Bernd Sturmfels
1 A Curve in Affine Three-Space
3(1)
2 Intersecting Our Curve With a Surface
4(2)
3 Changing the Ambient Polynomial Ring
6(2)
4 Monomials Under the Staircase
8(4)
5 Pennies, Nickels, Dimes and Quarters
12(5)
References
15(2)
Projective Geometry and Homological Algebra
17(24)
David Eisenbud
1 The Twisted Cubic
18(2)
2 The Cotangent Bundle of P3
20(4)
3 The Cotangent Bundle of a Projective Variety
24(2)
4 Intersections by Serre's Method
26(2)
5 A Mystery Variety in P3
28(13)
Appendix A How the "Mystery Variety" was Made
37(3)
References
40(1)
Data Types, Functions, and Programming
41(14)
Daniel R. Grayson
Michael E. Stillman
1 Basic Data Types
41(3)
2 Control Structures
44(2)
3 Input and Output
46(2)
4 Hash Tables
48(4)
5 Methods
52(1)
6 Pointers to the Source Code
53(2)
References
53(2)
Teaching the Geometry of Schemes
55(18)
Gregory G. Smith
Bernd Sturmfels
1 Distinguished Open Sets
55(1)
2 Irreducibility
56(2)
3 Singular Points
58(2)
4 Fields of Definition
60(1)
5 Multiplicity
61(1)
6 Flat Families
62(1)
7 Bezout's Theorem
63(1)
8 Constructing Blow-ups
64(1)
9 A Classic Blow-up
65(3)
10 Fano Schemes
68(5)
References
70(3)
Part II Mathematical Computations
Monomial Ideals
73(28)
Serkan Hosten
Gregory G. Smith
1 The Basics of Monomial Ideals
74(3)
2 Primary Decomposition
77(6)
3 Standard Pairs
83(6)
4 Generic Initial Ideals
89(6)
5 The Chain Property
95(6)
References
99(2)
From Enumerative Geometry to Solving Systems of Polynomial Equations
101(30)
Prank Sottile
1 Introduction
101(2)
2 Solving Systems of Polynomials
103(9)
3 Some Enumerative Geometry
112(2)
4 Schubert Calculus
114(7)
5 The 12 Lines: Reprise
121(10)
References
128(3)
Resolutions and Cohomology over Complete Intersections
131(48)
Luchezar L. Avramov
Daniel R. Grayson
1 Matrix Factorizations
133(6)
2 Graded Algebras
139(2)
3 Universal Homotopies
141(4)
4 Cohomology Operators
145(5)
5 Computation of Ext Modules
150(7)
6 Invariants of Modules
157(13)
7 Invariants of Pairs of Modules
170(9)
Appendix A Gradings
176(1)
References
177(2)
Algorithms for the Toric Hilbert Scheme
179(36)
Michael Stillman
Bernd Sturmfels
Rekha Thomas
1 Generating Monomial Ideals
182(6)
2 Polyhedral Geometry
188(5)
3 Local Equations
193(6)
4 The Coherent Component of the Toric Hilbert Scheme
199(16)
Appendix A Fourier-Motzkin Elimination
206(5)
Appendix B Minimal Presentation of Rings
211(2)
References
213(2)
Sheaf Algorithms Using the Exterior Algebra
215(36)
Wolfram Decker
David Eisenbud
1 Introduction
215(3)
2 Basics of the Bernstein-Gel'fand-Gel'fand Correspondence
218(4)
3 The Cohomology and the Tate Resolution of a Sheaf
222(4)
4 Cohomology and Vector Bundles
226(4)
5 Cohomology and Monads
230(6)
6 The Beilinson Monad
236(5)
7 Examples
241(10)
References
247(4)
Needles in a Haystack: Special Varieties via Small Fields
251(30)
Frank-Olaf Schreyer
Fabio Tonoli
1 How to Make Random Curves up to Genus 14
253(10)
2 Comparing Green's Conjecture for Curves and Points
263(4)
3 Pfaffian Calabi-Yau Threefolds in P6
267(14)
References
277(4)
D-modules and Cohomology of Varieties
281(44)
Uli Walther
1 Introduction
282(3)
2 The Weyl Algebra and Grobner Bases
285(7)
3 Bernstein-Sato Polynomials and Localization
292(12)
4 Local Cohomology Computations
304(9)
5 Implementation, Examples, Questions
313(12)
References
321(4)
Index 325