Muutke küpsiste eelistusi

E-raamat: Computer-Aided Analysis of Difference Schemes for Partial Differential Equations

  • Formaat: PDF+DRM
  • Ilmumisaeg: 01-Mar-2011
  • Kirjastus: Wiley-Interscience
  • Keel: eng
  • ISBN-13: 9781118030851
  • Formaat - PDF+DRM
  • Hind: 245,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 01-Mar-2011
  • Kirjastus: Wiley-Interscience
  • Keel: eng
  • ISBN-13: 9781118030851

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Advances in computer technology have conveniently coincided with trends in numerical analysis toward increased complexity of computational algorithms based on finite difference methods. It is no longer feasible to perform stability investigation of these methods manually--and no longer necessary. As this book shows, modern computer algebra tools can be combined with methods from numerical analysis to generate programs that will do the job automatically.

Comprehensive, timely, and accessible--this is the definitive reference on the application of computerized symbolic manipulations for analyzing the stability of a wide range of difference schemes. In particular, it deals with those schemes that are used to solve complex physical problems in areas such as gas dynamics, heat and mass transfer, catastrophe theory, elasticity, shallow water theory, and more.

Introducing many new applications, methods, and concepts, Computer-Aided Analysis of Difference Schemes for Partial Differential Equations
* Shows how computational algebra expedites the task of stability analysis--whatever the approach to stability investigation
* Covers ten different approaches for each stability method
* Deals with the specific characteristics of each method and its application to problems commonly encountered by numerical modelers
* Describes all basic mathematical formulas that are necessary to implement each algorithm
* Provides each formula in several global algebraic symbolic languages, such as MAPLE, MATHEMATICA, and REDUCE
* Includes numerous illustrations and thought-provoking examples throughout the text


For mathematicians, physicists, and engineers, as well as for postgraduate students, and for anyone involved with numeric solutions for real-world physical problems, this book provides a valuable resource, a helpful guide, and a head start on developments for the twenty-first century.
The Necessary Basics from the Stability Theory of Difference Schemes and Polynomials.
Symbolic-Numerical Method for the Stability Investigation of Difference Schemes on a Computer.
Application of Optimization Methods to the Stability Analysis of Difference Schemes.
Stability Analysis of Difference Schemes by Catastrophe Theory Methods.
Construction of Multiply Connected Stability Regions of Difference Schemes by Computer Algebra and Pattern Recognition.
Maximally Stable Difference Schemes.
Stability Analysis of Nonlinear Difference Schemes.
Symbolic Computation of Differential Approximations.
Appendices.
Index.
VICTOR G. GANZHA is Visiting Professor of Mathematics with theFaculty of Mathematics and Informatics at the University of Kassel,Germany, where he presents lecture courses on advanced computeralgebra systems and their applications to higher mathematics andnumerical analysis. He is coauthor of Differentialgleichungen mitMathematica.

E. V. VOROZHTSOV is a research scientist at the Russian Academy ofSciences in Novosibirsk, Russia, and Professor of Mathematics withthe Faculty of Flying Vehicles at the Novosibirsk State TechnicalUniversity. He is coauthor of Methods for the Localization ofSingularities in Numerical Solutions of Gas Dynamics Problems.