Preface |
|
xi | |
Acknowledgments |
|
xiii | |
Authors |
|
xv | |
|
Chapter 1 Lipopeptides and Computer-Aided Drug Design |
|
|
1 | (22) |
|
1.1 What Are Lipopeptides? |
|
|
1 | (1) |
|
1.2 Advantages And Applications Of Lipopeptides |
|
|
2 | (4) |
|
1.2.1 Biomedical and Therapeutic Applications of Lipopeptides |
|
|
2 | (1) |
|
1.2.2 Cyclic Lipopeptides: Potent Mosquito Larvicidal Agents |
|
|
3 | (1) |
|
1.2.3 Antiparasitic Activity of Lipopeptides |
|
|
3 | (1) |
|
1.2.4 Antiviral Activity of Lipopeptides |
|
|
4 | (1) |
|
1.2.5 Antitumor Activity and Lipopeptides-Induced Apoptotic Pathway |
|
|
4 | (1) |
|
1.2.6 Anti-Obesity Activity of Lipopeptides |
|
|
5 | (1) |
|
1.2.7 Thrombolytic Activity of Lipopeptides |
|
|
6 | (1) |
|
1.3 Computer-Aided Drug Designing (In Silico Drug Design) |
|
|
6 | (11) |
|
1.3.1 Homology Modeling (HM) |
|
|
7 | (3) |
|
1.3.2 Molecular Docking Simulations (MDS) |
|
|
10 | (3) |
|
|
13 | (1) |
|
1.3.4 Pharmacokinetics/ADMET Study |
|
|
14 | (1) |
|
1.3.4.1 Absorption/Administration (Pharmacokinetics) |
|
|
15 | (1) |
|
1.3.4.2 Distribution (Pharmacology)/Dispersion or Dissemination of Substances |
|
|
15 | (1) |
|
|
15 | (1) |
|
1.3.4.4 Excretion of the Drug |
|
|
16 | (1) |
|
|
16 | (1) |
|
1.3.5 Pharmacophore Properties |
|
|
16 | (1) |
|
1.4 Pharmacophore Study As Application For Drug-Related Activities |
|
|
17 | (1) |
|
|
17 | (1) |
|
|
18 | (5) |
|
Chapter 2 Pore-Forming Antibacterial Lipopeptides |
|
|
23 | (26) |
|
|
23 | (1) |
|
|
24 | (6) |
|
2.2.1 Activity of Friulimicin B in Bacterial Cell |
|
|
25 | (1) |
|
2.2.2 Ligands of Friulimicin B |
|
|
26 | (1) |
|
2.2.3 Docking Studies for Friulimicin |
|
|
27 | (1) |
|
2.2.4 ADMET Study for Friulimicin |
|
|
28 | (2) |
|
2.2.5 Pharmacophore Study for Friulimicin |
|
|
30 | (1) |
|
|
30 | (10) |
|
2.3.1 Structure of Tridecaptin A |
|
|
31 | (1) |
|
2.3.2 Mode of Action of Tridecaptin A |
|
|
32 | (1) |
|
2.3.3 Ligands of Tridecaptin A |
|
|
32 | (1) |
|
2.3.4 Molecular Docking Studies of Tridecaptin |
|
|
33 | (3) |
|
|
36 | (2) |
|
2.3.6 Concept of Pharmacophore for Tridecaptin A |
|
|
38 | (2) |
|
|
40 | (5) |
|
2.4.1 Introduction of Tsushimycin |
|
|
40 | (1) |
|
2.4.2 Physiological Effect of Tsushimycin |
|
|
40 | (1) |
|
2.4.3 Identification of Ligands of Tsushimycin |
|
|
41 | (1) |
|
2.4.4 Molecular Docking Simulations |
|
|
42 | (1) |
|
2.4.5 ADMET Properties of Tsushimycin |
|
|
42 | (2) |
|
2.4.6 Pharmacophore Studies of Tsushimycin with its Ligands |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
45 | (4) |
|
Chapter 3 Antibacterial Lipopeptides |
|
|
49 | (30) |
|
3.1 Polymyxin As An Antimicrobial Drug |
|
|
49 | (7) |
|
|
50 | (1) |
|
3.1.2 Antibacterial Activity of Polymyxin |
|
|
50 | (2) |
|
3.1.3 Identification of Drug Target Sites |
|
|
52 | (1) |
|
3.1.4 Ligand-Based Molecular Docking |
|
|
53 | (1) |
|
3.1.5 Drug Behavior Analysis Using ADMET |
|
|
54 | (2) |
|
3.1.6 Pharmacophore Models for Polymyxin |
|
|
56 | (1) |
|
|
56 | (4) |
|
3.2.1 Antimicrobial Activity of Laspartomycin |
|
|
59 | (1) |
|
3.2.2 Ligands of Laspartomycin |
|
|
59 | (1) |
|
3.2.3 Molecular Docking as a Tool for Drug Discovery |
|
|
60 | (1) |
|
3.2.4 ADMET Properties of Laspartomycin |
|
|
60 | (1) |
|
3.2.5 Pharmacophore Modeling of Laspartomycin |
|
|
60 | (1) |
|
|
60 | (14) |
|
3.3.1 Biosynthesis of Vancomycin |
|
|
64 | (1) |
|
3.3.2 Action of Vancomycin against Bacteria |
|
|
65 | (1) |
|
3.3.3 Ligand Identification of Vancomycin |
|
|
66 | (1) |
|
3.3.4 Studies on Molecular Docking of Vancomycin |
|
|
66 | (6) |
|
3.3.5 ADMET Studies of Vancomycin |
|
|
72 | (1) |
|
3.3.6 Ligand-Based Pharmacophore Modeling of Vancomycin |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
75 | (4) |
|
Chapter 4 Antifungal Lipopeptides |
|
|
79 | (28) |
|
|
79 | (1) |
|
|
80 | (7) |
|
|
80 | (2) |
|
4.2.2 Antifungal Properties of Fengycin |
|
|
82 | (1) |
|
4.2.3 Identification of Ligands |
|
|
82 | (1) |
|
4.2.4 Molecular Docking for Drug Targeting |
|
|
83 | (1) |
|
4.2.5 ADMET Studies of Fengycin |
|
|
84 | (3) |
|
4.2.6 Pharmacophore Tool for Drug Discovery |
|
|
87 | (1) |
|
|
87 | (8) |
|
|
87 | (2) |
|
4.3.2 Mechanism of Action of Iturin A |
|
|
89 | (1) |
|
|
90 | (1) |
|
4.3.4 Drug-Ligand Interaction by Molecular Docking |
|
|
90 | (3) |
|
4.3.5 ADMET Modeling of Iturin A |
|
|
93 | (2) |
|
4.3.6 Pharmacophore Modeling of Iturin A |
|
|
95 | (1) |
|
|
95 | (8) |
|
|
95 | (2) |
|
4.4.2 Mode of Action - Surfactin |
|
|
97 | (1) |
|
4.4.3 Discovering Ligands of Surfactin |
|
|
98 | (1) |
|
4.4.4 Molecular Docking as a Tool for Design of Drugs |
|
|
99 | (1) |
|
4.4.5 ADMET Studies of Surfactin |
|
|
100 | (2) |
|
4.4.6 Pharmacophore Studies in Drug Design |
|
|
102 | (1) |
|
|
103 | (1) |
|
|
103 | (4) |
|
Chapter 5 Precursors of Lipopeptides |
|
|
107 | (20) |
|
|
107 | (8) |
|
|
107 | (2) |
|
5.1.2 Mechanism of Action of the Corresponding Lipopeptide |
|
|
109 | (1) |
|
5.1.3 Ligand Identification of Plipastatin Synthase |
|
|
110 | (1) |
|
5.1.4 Structure Determination of Plipastatin Synthase Using Homology Modeling |
|
|
110 | (1) |
|
5.1.5 Molecular Docking of the Generated Model |
|
|
111 | (1) |
|
5.1.6 Pharmacokinetics of Plipastatin |
|
|
112 | (3) |
|
|
115 | (7) |
|
|
115 | (1) |
|
5.2.2 Synthesis of Fusaricidin from Fusaricidin Synthase |
|
|
115 | (2) |
|
5.2.3 Cytotoxic Effect of Fusaricidin Lipopeptide |
|
|
117 | (1) |
|
5.2.4 Identification of Ligands |
|
|
118 | (1) |
|
5.2.5 Ligand-Mediated Molecular Docking |
|
|
118 | (2) |
|
5.2.6 Drug Behavior Studies Using ADMET |
|
|
120 | (2) |
|
|
122 | (1) |
|
|
123 | (4) |
Index |
|
127 | |