Muutke küpsiste eelistusi

E-raamat: Computer-aided Design Of Communication Networks

(Dalian Maritime Univ, China), (Univ Of Illinois, Chicago, Usa)
  • Formaat - PDF+DRM
  • Hind: 51,48 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Circuit design is now carried out by computers using algorithms instead of tables, charts and rules of thumb. The book is an introduction to the computer-aided design of communication networks, based on a firm analytic foundation of circuit theory and numerical techniques. It provides design procedures and techniques of filters, broadband matching networks, compatible impedances, high-frequency amplifiers, diplexers and multiplexers. All programs are written in FORTRAN 77 and run by MS-FORTRAN 5.1 and WATFIV compilers on personal computers. A special feature of the book is that it bridges the gap between theory and practice, and algorithms and implementations. The level of the book is suitable for a senior elective or a circuit design course for the first-year graduate students as well as a reference book for practicing engineers.
Preface v
Fundamentals of Network Theory
1(34)
The Complex Frequency Variables s
1(3)
Network elements
4(4)
Network functions
8(7)
Transducer power gain
15(3)
Tellegen's theorem
18(3)
Passive immittances
21(4)
Positive real functions
25(4)
Positive real matrix
29(6)
References
33(2)
The Transmission and Reflection Coefficients
35(44)
The reflection coefficients in a one-port network
35(2)
Real normalization
37(3)
Multiport real normalized scattering parameters
40(5)
The scattering matrix of a two-port networks
45(5)
Complex normalization
50(11)
Basis-independent reflection coefficient
52(2)
Factorizing of para-Hermitian matrix
54(5)
Complex normalization reflection coefficient of a lossless two-port network
59(2)
Physical interpretation of the normalized scattering parameters
61(4)
The normalized scattering matrix and passivity
65(2)
Interconnection of multiport networks
67(3)
The consistency of complex normalized scattering matrices
70(9)
References
77(2)
Elements of Passive Network Synthesis
79(60)
Synthesis of LC one-port networks
79(10)
The Fostor canonical forms
81(4)
The Cauer canonical forms
85(4)
Transfer function synthesis
89(11)
Calculation of two-port parameters from the transfer functions
89(4)
Ladder realization of a non-terminated or singly terminated two-port
93(2)
Partial pole removal and zero shifting
95(5)
Darlington synthesis for a double-terminated LC network
100(13)
Darlington's procedure
100(3)
Darlington synthesis
103(3)
Program for computing mid-series and mid-shunt element values
106(7)
Cascade synthesis
113(26)
The main theorem
115(4)
The zero producing sections
119(1)
The Darlington type-C section
120(1)
The Brune section
121(5)
The Darlington type-D section
126(4)
The Darlington type-E section
130(2)
The Richards section
132(1)
Illustrative examples
133(3)
References
136(3)
Filter Approximation and Realization
139(68)
The low-pass Butterworth response
139(3)
Realization of a low-pass Butterworth filter
142(9)
The low-pass Chebyshev response
151(5)
Realization of a low-pass Chebyshev filter
156(7)
The low-pass elliptic response
163(13)
Jacobian elliptic functions
165(7)
The design parameters of an elliptic filter
172(4)
The elliptic network
176(14)
The Bessel-Thomson response
190(17)
Maximally-flat delay characteristic
191(5)
Design of Bessel-Thomson filters
196(9)
References
205(2)
Circuit Optimization
207(38)
Basic concepts
207(5)
Gradient optimization methods
212(13)
Steepest descent
212(5)
Newton's method
217(2)
The conjugate gradient method
219(6)
Least-squares problem
225(3)
Direct search optimization method
228(9)
Tabulation method
228(1)
Flexible polyhedron search
229(8)
One-dimensional search
237(8)
Interpolation method
237(4)
Elimination method
241(3)
References
244(1)
Impedance Transformation
245(52)
Exactly transformation at a given frequency ω0
245(15)
Real source and real load at a given ω0
247(1)
Complex source and complex load at a given ω0
248(6)
Three-element matching networks
254(4)
Uniform lossless transmission lines
258(2)
Low-pass impedance transformation networks
260(15)
Introduction
260(3)
The Butterworth impedance transformation networks
263(2)
The Chebyshev impedance transformation networks
265(4)
Derivation of formulas
269(1)
Denominator polynomial of ρ(s)
270(5)
Computer-aided design of low-pass impedance transformation networks
275(7)
The Butterworth impedance transformation networks
275(3)
The Chebyshev impedance transformation networks
278(2)
Subroutines
280(2)
Short-step Chebyshev impedance transformers
282(15)
Response parameters
282(4)
The transformation network
286(6)
The Richards realization
292(4)
References
296(1)
Broadband Matching Networks
297(102)
Bode's gain-bandwidth limitations
297(5)
Youla's theory of broadband matching
302(6)
Preliminary consideration of Youla's theory
302(3)
Basic constraints on ρ2(s)
305(1)
Design procedure for singly matched networks
306(2)
Parallel RC load
308(14)
Butterworth matching networks
309(6)
Chebyshev matching networks
315(7)
RLC load: the low-pass Butterworth networks
322(21)
Low-pass Butterworth matching networks
322(5)
Explicit formulas for the low-pass Butterworth response
327(5)
Explicit formuas for Butterworth network containing a Darlington type-C section
332(5)
Illustrative examples
337(6)
RLC load: the low-pass Chebyshev networks
343(18)
Basic constraints for the low-pass Chebyshev response
343(4)
Explicit formulas for the low-pass Chebyshev response
347(9)
Illustrative examples
356(5)
Ladder impedance matching networks for the RLC load
361(11)
The Butterworth ladder impedance matching networks
361(5)
The Chebyshev ladder impedance matching networks
366(6)
RCR load
372(17)
The Butterworth transducer power-gain characteristic
373(8)
The Chebyshev transducer power-gain characteristic
381(8)
Constant transducer power gain
389(10)
References
397(2)
Compatible Impedances
399(64)
Preliminaries
401(6)
Design by means of the open-circuit impedance parameters
407(15)
Chain parameter approach
422(8)
Wohler's compatibility theory
430(6)
Equivalent conditions
436(10)
Double matching problem
446(17)
References
461(2)
Real-Frequency Solutions of the Broadband Matching Problems
463(72)
Direct real-frequency approach
463(3)
Piecewise linear approximation
466(4)
Piecewise linear Hilbert transforms
470(11)
Gain objective function
481(15)
Rational least-squared-error approximation of R22(ω)
496(9)
Rational function method
505(2)
Network synthesis from a given real part
507(7)
Bode method
508(2)
Brune-Gewertz method
510(4)
Double matching problems
514(9)
Scattering properties of the equalized system
515(2)
Computational technique
517(3)
Illustrative example
520(3)
Using chain parameters to solve double matching problems
523(12)
Solution of the double matching problem using chain parameters
526(3)
Illustrative example
529(4)
References
533(2)
Diplexer and Multiplexer
535(52)
The scattering matrix of a lossless reciprocal three-port network
535(7)
Analytic method for the design of a constant resistance multiplexer
542(13)
Maximally flat low-pass high-pass reactance-ladder diplexers
555(13)
A real-frequency approach to the design of a low-pass high-pass reactance-ladder diplexer
568(19)
References
586(1)
Appendix Basic Fortran Subroutines in Network Synthesis 587(36)
1.1 The determinant of an N x N matrix
587(1)
1.2 Matrix inversion
588(3)
1.3 Gauss elimination algorithm
591(2)
2.1 Evaluation of a polynomial
593(1)
2.2 Determination of a polynomial from its complex zeros
594(2)
2.3 Multiplication of two polynomials
596(2)
2.4 Solution of cubic equation
598(2)
2.5 Find a real root of a nonlinear equation
600(2)
2.6 Find the roots of a nonlinear equation
602(2)
3.1 Expansion of a rational function into a continued fraction
604(2)
3.2 Determination of a rational function from a continued fraction
606(2)
3.2 Partial fraction expansion
608(2)
3.4 Long division
610(1)
4.1 The golden section search
611(5)
4.2 Interpolation method
616(7)
References
621(2)
Index 623(4)
Fortran Programs 627