|
1 Introduction To Computer Algebra |
|
|
1 | (20) |
|
1.1 Capabilities of Computer Algebra Systems |
|
|
1 | (17) |
|
|
18 | (1) |
|
|
18 | (3) |
|
2 Programming In Computer Algebra Systems |
|
|
21 | (18) |
|
2.1 Internal Representation of Expressions |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
23 | (2) |
|
2.4 Recursion and Iteration |
|
|
25 | (3) |
|
|
28 | (3) |
|
2.6 Divide-and-Conquer Programming |
|
|
31 | (1) |
|
2.7 Programming through Pattern Matching |
|
|
32 | (2) |
|
|
34 | (1) |
|
|
34 | (5) |
|
3 Number Systems And Integer Arithmetic |
|
|
39 | (26) |
|
|
39 | (1) |
|
3.2 Integer Arithmetic: Addition and Multiplication |
|
|
40 | (9) |
|
3.3 Integer Arithmetic: Division with Remainder |
|
|
49 | (3) |
|
3.4 The Extended Euclidean Algorithm |
|
|
52 | (4) |
|
|
56 | (4) |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
62 | (3) |
|
|
65 | (26) |
|
|
65 | (5) |
|
4.2 Modulare Square Roots |
|
|
70 | (2) |
|
4.3 Chinese Remainder Theorem |
|
|
72 | (2) |
|
4.4 Fermat's Little Theorem |
|
|
74 | (4) |
|
|
78 | (3) |
|
|
81 | (6) |
|
|
87 | (1) |
|
|
88 | (3) |
|
5 Coding Theory And Cryptography |
|
|
91 | (22) |
|
5.1 Basic Concepts of Coding Theory |
|
|
91 | (2) |
|
|
93 | (5) |
|
|
98 | (1) |
|
5.4 Error Correcting Codes |
|
|
99 | (4) |
|
|
103 | (7) |
|
|
110 | (1) |
|
|
111 | (2) |
|
|
113 | (38) |
|
|
113 | (4) |
|
6.2 Multiplication: The Karatsuba Algorithm |
|
|
117 | (3) |
|
6.3 Fast Multiplication with FFT |
|
|
120 | (8) |
|
6.4 Division with Remainder |
|
|
128 | (4) |
|
6.5 Polynomial Interpolation |
|
|
132 | (2) |
|
6.6 The Extended Euclidean Algorithm |
|
|
134 | (3) |
|
|
137 | (6) |
|
6.8 Squarefree Factorization |
|
|
143 | (4) |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
149 | (2) |
|
|
151 | (42) |
|
7.1 Polynomial Quotient Rings |
|
|
151 | (4) |
|
7.2 Chinese Remainder Theorem |
|
|
155 | (2) |
|
|
157 | (10) |
|
|
167 | (6) |
|
|
173 | (7) |
|
7.6 Polynomial Systems of Equations |
|
|
180 | (6) |
|
|
186 | (1) |
|
|
186 | (7) |
|
8 Factorization In Polynomial Rings |
|
|
193 | (28) |
|
8.1 Preliminary Considerations |
|
|
193 | (3) |
|
8.2 Efficient Factorization in Zp[ x] |
|
|
196 | (7) |
|
8.3 Squarefree Factorization of Polynomials over Finite Fields |
|
|
203 | (2) |
|
8.4 Efficient Factorization in Q[ x] |
|
|
205 | (5) |
|
|
210 | (5) |
|
8.6 Multivariate Factorization |
|
|
215 | (2) |
|
|
217 | (1) |
|
|
218 | (3) |
|
9 Simplification And Normal Forms |
|
|
221 | (14) |
|
9.1 Normal Forms and Canonical Forms |
|
|
221 | (3) |
|
9.2 Normal Forms and Canonical Forms for Polynomials |
|
|
224 | (2) |
|
9.3 Normal Forms for Rational Functions |
|
|
226 | (1) |
|
9.4 Normal Forms for Trigonometric Polynomials |
|
|
227 | (4) |
|
|
231 | (1) |
|
|
232 | (3) |
|
|
235 | (54) |
|
|
235 | (6) |
|
|
241 | (3) |
|
10.3 Compulation of Formal Power Series |
|
|
244 | (25) |
|
10.3.1 Holonomic Differential Equations |
|
|
247 | (9) |
|
10.3.2 Holonomic Recurrence Equations |
|
|
256 | (5) |
|
10.3.3 Hypergeometric Functions |
|
|
261 | (7) |
|
10.3.4 Efficient Computation of Taylor Polynomials of Holonomic Functions |
|
|
268 | (1) |
|
|
269 | (5) |
|
|
274 | (7) |
|
|
281 | (1) |
|
|
281 | (8) |
|
|
289 | (40) |
|
|
289 | (7) |
|
|
296 | (3) |
|
11.3 Indefinite Summation |
|
|
299 | (3) |
|
11.4 Indefinite Summation of Hypergeometric Terms |
|
|
302 | (12) |
|
11.5 Definite Summation of Hypergeometric Terms |
|
|
314 | (10) |
|
|
324 | (1) |
|
|
325 | (4) |
|
12 Algorithmic Integration |
|
|
329 | (32) |
|
12.1 The Bernoulli Algorithm for Rational Functions" |
|
|
329 | (1) |
|
12.2 Algebraic Prerequisites |
|
|
330 | (5) |
|
|
335 | (6) |
|
|
341 | (17) |
|
|
358 | (1) |
|
|
359 | (2) |
References |
|
361 | (4) |
List of Symbols |
|
365 | (2) |
Mathematica List of Keywords |
|
367 | (5) |
Index |
|
372 | |