Muutke küpsiste eelistusi

E-raamat: Computer Analysis of Images and Patterns: 20th International Conference, CAIP 2023, Limassol, Cyprus, September 25-28, 2023, Proceedings, Part II

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume LNCS 14184 and 14185 constitutes the refereed proceedings of the 20th International Conference, CAIP 2023, in Limassol, Cyprus, in September 2023.  

The 54 full papers presented were carefully reviewed and selected from 67 submissions. They were organized in the following section as follows:

Part I: PAR Contest 2023; Deep Learning; Machine Learning for Image and Pattern Analysis; and Object Recognition and Segmentation.

Part II : Biometrics- Human Pose Estimation- Action Recognition; Biomedical Image and Pattern Analysis; and General Vision- AI Applications.
Biometrics  - Human Pose Estimation - Action Recognition.- A Systematic
Approach for Automated Lecture Style Evaluation Using Biometric
Features.- Highly crowd detection and counting based on curriculum
learning.- Race Bias Analysis of Bona Fide Errors in Face
Anti-spoofing.- Fall detection with event-based data: A case study.- Towards
Accurate and Efficient Sleep Period Detection using Wearable Devices.- RLSTM:
A Novel Residual and Recurrent Network for Pedestrian Action
Classification.- Biomedical Image and Pattern Analysis.- Temporal Sequences
of EEG Covariance Matrices for Automated Sleep Stage Scoring with Attention
Mechanisms.- Complete AI-based System for Dietary Assessment and Personalized
Insulin Adjustment in Type 1 Diabetes Self-Management.- COFI -
Coarse-semantic to fine-instance unsupervised mitochondria segmentation in
EM.- Empirical study of attention-based models for automatic classification
of gastrointestinal endoscopy images.- Classification of Breast
Micro-Calcifications as Benign or Malignant using Subtraction of Temporally
Sequential Digital Mammograms and Machine Learning.- Fourier Descriptor Loss
and Polar Coordinate Transformation for Pericardium Segmentation.- Stroke
Risk Stratification Using Transfer Learning on Carotid Ultrasound
Images.- Comparative Study of Explainable AI models in the assessment of
Multiple Sclerosis.- General Vision - AI Applications.- Biometric Recognition
of African Clawed Frogs.- Teacher-Student synergetic knowledge distillation
for  detecting alcohol consumption in NIR iris Images.- Performance
Assessment of Fine-tuned Barrier Recognition Models in Varying
Conditions.- Keyrtual: A Lightweight Virtual Musical Keyboard based on RGB-D
and Sensors Fusion.- Classification of Honey Pollens with ImageNet Neural
Networks.- Defocus Blur Synthesis and Deblurring via Interpolation and
Extrapolation in Latent Space.- Unsupervised Representation Learning in
Partially Observable Atari Games.- Structural Analysis of the Additive Noise
Impact on the -tree.- Augmented Reality for indoor localization and
navigation: the case of UNIPI AR Experience.- A Benchmark and Investigation
of Deep-Learning-Based Techniques for Detecting Natural Disasters in Aerial
Images.- Perceptual Light Field Image Coding with CTU Level Bit
Allocation.- Comparative Performance Assessment of Different Video Codecs.