Muutke küpsiste eelistusi

E-raamat: Computer Animation Complete: All-in-One: Learn Motion Capture, Characteristic, Point-Based, and Maya Winning Techniques

(Professor Emeritus, Department of Computer Science and Engineering, The Ohio State)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 13-Oct-2009
  • Kirjastus: Morgan Kaufmann Publishers In
  • Keel: eng
  • ISBN-13: 9780123785640
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 58,03 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 13-Oct-2009
  • Kirjastus: Morgan Kaufmann Publishers In
  • Keel: eng
  • ISBN-13: 9780123785640
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A compilation of key chapters from the top MK computer animation books available today - in the areas of motion capture, facial features, solid spaces, fluids, gases, biology, point-based graphics, and Maya. The chapters provide CG Animators with an excellent sampling of essential techniques that every 3D artist needs to create stunning and versatile images. Animators will be able to master myriad modeling, rendering, and texturing procedures with advice from MK's best and brightest authors.

Divided into five parts (Introduction to Computer Animation and Technical Background, Motion Capture Techniques, Animating Substances, Alternate Methods, and Animating with MEL for MAYA), each one focusing on specific substances, tools, topics, and languages, this is a MUST-HAVE book for artists interested in proficiency with the top technology available today! Whether you're a programmer developing new animation functionality or an animator trying to get the most out of your current animation software, Computer Animation Complete: will help you work more efficiently and achieve better results. For programmers, this book provides a solid theoretical orientation and extensive practical instruction information you can put to work in any development or customization project. For animators, it provides crystal-clear guidance on determining which of your concepts can be realized using commercially available products, which demand custom programming, and what development strategies are likely to bring you the greatest success.

  • Expert instruction from a variety of pace-setting computer graphics researchers.
  • Provides in-depth coverage of established and emerging animation algorithms.
  • For readers who lack a strong scientific background, introduces the necessary concepts from mathematics, biology, and physics.
  • A variety of individual languages and substances are addressed, but addressed separately - enhancing your grasp of the field as a whole while providing you with the ability to identify and implement solutions by category.

Arvustused

"Computer Animation Complete sets the stage with a well written introduction. In this section, the first chapter discusses some of the key events in the history of animation to introduce the principles of animation and film making. This chapter is written at a non-technical level and makes very interesting reading for anyone interested in animation. The target audience, however, is experienced animators. This book does not disappoint." --School Tech Talk Blog and MacDirectory.com

Muu info

Learn hundreds of tips, tricks, shortcuts and more - all within the covers of one complete, inspiring reference.
Contributing Authors xiii
PART I INTRODUCTION TO COMPUTER ANIMATION
CHAPTER 1 Introduction
3
1.1 Perception
4
1.2 The Heritage of Animation
6
1.2.1 Early Devices
7
1.2.2 The Early Days of Conventional Animation
9
1.2.3 Disney
10
1.2.4 Contributions of Others
12
1.2.5 Other Media for Animation
12
1.2.6 Principles of Animation
13
1.2.7 Principles of Filmmaking
14
1.3 Animation Production
16
1.3.1 Sound
18
1.4 Computer Animation Production
19
1.4.1 Computer Animation Production Tasks
21
1.4.2 Digital Editing
22
1.4.3 Digital Video
25
1.4.4 Digital Audio
26
1.5 A Brief History of Computer Animation
27
1.5.1 Early Activity (pre-1980)
27
1.5.2 The Middle Years (The 1980's)
30
1.5.3 Animation Comes of Age (The mid-1980's and beyond)
32
1.6
Chapter Summary
35
References
36
CHAPTER 2 Technical Background
39
2.1 Spaces and Transformations
40
2.1.1 The Display Pipeline
41
2.1.2 Homogeneous Coordinates and the Transformation Matrix
45
2.1.3 Compound Transformation: Concatenating Transformation Matrices
46
2.1.4 Basic Transformations
47
2.1.5 Representing an Arbitrary Orientation
49
2.1.6 Extracting Transformations from a Matrix
53
2.1.7 Description of Transformations in the Display Pipeline
54
2.1.8 Error Considerations
56
2.2 Orientation Representation
60
2.2.1 Fixed-Angle Representation
61
2.2.2 Euler Angle Representation
63
2.2.3 Angle and Axis Representation
64
2.2.4 Quaternion Representation
65
2.2.5 Exponential Map Representation
67
2.3
Chapter Summary
68
References
68
PART II MOTION CAPTURE TECHNIQUES
CHAPTER 3 Motion Capture Primer
71
3.1 Motion Capture and Performance Animation
72
3.2 History of Performance Animation in the Entertainment Field
72
3.2.1 The Rotoscope
72
3.2.2 Brilliance
73
3.2.3 Pacific Data Images
75
3.2.4 deGraf/Wahrman
80
3.2.5 Kleiser-Walczak Construction Company
80
3.2.6 Homer and Associates
81
3.3 Types of Motion Capture
84
3.3.1 Optical Motion Capture Systems
84
3.3.2 Electromagnetic Trackers
89
3.3.3 Electromechanical Suits
92
3.3.4 Digital Armatures
94
3.3.5 Other Motion Capture Systems
97
3.4 Applications of Motion Capture
100
3.4.1 Medicine
100
3.4.2 Sports
102
3.4.3 The Entertainment Industry
102
3.4.4 Law
104
CHAPTER 4 The Motion Data
105
4.1 Motion Data Types and Formats
105
4.1.1 The Acclaim File Format
107
4.1.2 The .asf File
108
4.1.3 The .amc File
111
4.1.4 The .bva File Format
112
4.1.5 The .bvh File Format
113
4.1.6 The .trc File Format
117
4.1.7 The .htr File Format
119
4.2 Writing a Motion Capture Translator
128
PART III ANIMATING SUBSTANCES
CHAPTER 5 Animating Facial Features
167
5.1 The Human Face
168
5.1.1 Anatomic Structure
168
5.1.2 The Facial Action Coding System (FACS)
169
5.2 Facial Models
170
5.2.1 Creating a Continuous Surface Model
172
5.2.2 Textures
178
5.3 Animating the Face
178
5.3.1 Parameterized Models
178
5.3.2 Blend Shapes
179
5.3.3 Muscle Models
180
5.3.4 Expressions
184
5.3.5 Summary
184
5.4 Lip-Sync Animation
185
5.4.1 Articulators of Speech
185
5.4.2 Phonemes
186
5.4.3 Coarticulation
187
5.4.4 Prosody
188
5.5
Chapter Summary
188
References
188
CHAPTER 6 Animating Solid Spaces
191
6.1 Animation Paths
192
6.2 Animating Solid Textures
193
6.2.1 Marble Forming
194
6.2.2 Marble Moving
196
6.2.3 Animating Solid-Textured Transparency
197
6.3 Animation of Gaseous Volumes
200
6.3.1 Helical Path Effects
200
6.4 Three-Dimensional Tables
208
6.4.1 Accessing the Table Entries
209
6.4.2 Functional Flow Field Tables
209
6.4.3 Functional Flow Field Functions
210
6.4.4 Combinations of Functions
215
6.5 Animating Hypertext tires
218
6.5.1 Volumetric Marble Formation
218
6.6 Particle Systems: Another Procedural Animation Technique
219
6.7 Conclusion
223
References
223
CHAPTER 7 Animating Fluids and Gases
225
7.1 Specific Fluid Models
226
7.1.1 Models of Water
226
7.1.2 Models of Clouds by David Ebert
238
7.1.3 Models of Fire
249
7.2 Computational Fluid Dynamics
252
7.2.1 General Approaches to Modeling Fluids
252
7.2.2 CFD Equations
254
7.3
Chapter Summary
259
References
259
CHAPTER 8 Animating Biology
263
8.1 Introduction
264
8.2 Animation and Film Perception
265
8.2.1 Seeing, in Brief
265
8.2.2 Seeing Motion and Animation
267
8.3 The Animator's Workflow
268
8.3.1 Story: The Workflow's Driving Force
268
8.4 The Three-Stage Workflow
270
8.4.1 Workflow Stage 1: Preproduction
271
8.4.2 Workflow Stage 2: Production
278
8.4.3 Workflow Stage 3: Postproduction
288
8.4.4 Putting It All Together
288
8.5 Animation
289
8.6 Maya
289
8.6.1 Procedural versus Keyframe Animation
289
8.6.2 Keyframes and Memory
290
8.6.3 The Animation Menu Set
291
8.6.4 Setting Keys
291
8.6.5 Auto Keyframe
292
8.6.6 Graphing Animation
293
8.6.7 Deleting Keys
295
8.6.8 Time Units
295
8.6.9 Playback Settings
296
8.7 Tutorial 08.01: A Keyframe Animation
296
8.7.1 Preparation
297
8.7.2 Set the Keyframes
298
8.7.3 Play, Scrub, and Stop the Animation
298
8.7.4 Edit the Animation Curves
299
8.7.5 The Graph Editor Outliner
300
8.7.6 The Graph Editor Graph View
300
8.7.7 The Graph Editor Toolbar
302
8.7.8 Moving Keys
302
8.8 Animation Nodes in the Hypergraph and Attribute Editor
303
8.9 Tutorial 08.02: A Simple Procedural Animation
303
8.9.1 Animation Expressions in Brief
304
8.9.2 Create an Animation Expression
304
8.9.3 Animation Expression Nodes
306
8.10 Summary
307
References
308
PART IV OTHER METHODS
CHAPTER 9 Point-Based Animation
311
9.1 Introduction
312
9.2 Meshless Finite Elements
312
9.2.1 Overview
312
9.2.2 Continuum Elasticity
313
9.2.3 Meshless Discretization
318
9.2.4 Moving Least Squares Interpolation
319
9.2.5 Updating Strains and Stresses
321
9.2.6 Computation of Forces via Strain Energy
321
9.2.7 Animation of Elastic Objects
323
9.2.8 Plasticity
325
9.2.9 Passive Surfel Advection
326
9.2.10 Conclusion
327
9.3 Animation of Fracturing Material
327
9.3.1 Overview
327
9.3.2 Historical Background
329
9.3.3 Modeling of Discontinuities
330
9.3.4 Surface Model
331
9.3.5 Crack Initiation and Propagation
333
9.3.6 Topology Control
334
9.3.7 Volumetric Sampling
336
9.3.8 Fracture Control
338
9.3.9 Simulation Pipeline
339
9.3.10 Conclusion
340
9.4 Fluid Simulation
340
9.4.1 Overview
340
9.4.2 Simulation Methods
341
9.4.3 Smoothed Particle Hydrodynantics
342
9.4.4 Surface Representation
348
9.4.5 Surface Tracking Using Point Samples
350
9.4.6 Conclusion
353
References
354
PART V ANIMATING WITH MEL FOR MAYA
CHAPTER 10 Maya Under the Hood
361
10.1 Why Look Under the Hood?
362
10.2 The Dependency Graph, Attributes, and Connections
362
10.3 Example 1: Using the Hypergraph to Explore the Dependency Graph
368
10.4 Transform Hierarchy and Parent/Child Relationships
372
10.5 Examining the Hierarchy
373
10.6 Transform and Shape Nodes
374
10.7 Example 2: Exploring Transform and Shape Nodes, Instancing, and History
375
10.8 Mel and Maya's User Interface
377
10.9 What to Remember About How Maya Works Behind the Scenes
378
CHAPTER 11 MEL Animation
379
11.1 Animation
379
11.1.1 Time
379
11.1.2 Playback
382
11.1.3 Animation Curves
384
11.1.4 Skeletons
403
11.1.5 Motion Paths
419
CHAPTER 12 Examples Using MEL with Solid Body Dynamics
423
12.1 Example 1: Particle Collisions
424
12.1.1 Create the Scene
425
12.1.2 Collide the Particles
428
12.1.3 Setting Controls for Collisions
429
12.1.4 Using Other Controls in geoConnector Node
430
12.1.5 Finish Scene Using MEL
431
12.2 Example 2: Collision Events
433
12.2.1 Overview
434
12.2.2 Add Emitter and Particles
434
12.2.3 Dynamic Relationships
436
12.2.4 Limit Number of Particles and Add Gravity
437
12.2.5 Add Other Collisions
438
12.2.6 Events
439
12.2.7 Expression for Buckets
442
12.2.8 Edit Settings to Fix Problems
444
12.2.9 Speed
445
12.3 Example 3: Collisions Between Objects in Solid Dynamics
445
12.3.1 Write Small Duplicate and Position Script
446
12.3.2 Common Mistakes in Assembling String Variables
448
12.3.3 Create Collision Box
449
12.3.4 Flip Normals on collisionBox
450
12.3.5 Active and Passive Rigid Bodies
453
12.3.6 Make Each Grid a Passive Collision Object
456
12.3.7 Turn On Collision Data Options
457
12.3.8 Change Color of Grids with Collisions
459
12.4 Example 4: Solid Dynamics and Particles
464
12.4.1 Create Interface Window for Aim Control Using MEL
465
12.4.2 Add New Window Control to Shelf
466
12.4.3 Convert Panel to Polygons and Break Up into Pieces
466
12.4.4 Add Dynamics and Expressions to Pieces
470
12.4.5 Create Full MEL Script
472
12.4.6 Load in Scene and Run Script
474
12.4.7 Pass a Float into panelBreakup
474
CHAPTER 13 Examples Using MEL in Character Rigging
475
13.1 Example 1: Character Controls
476
13.1.1 Load Scene
476
13.1.2 Overview of Scene
477
13.1.3 Overview of mrBlah's Controls
477
13.1.4 Locking Attributes
481
13.1.5 Arm Controls
481
13.1.6 Set Up mrBlah's Backbone Controls
481
13.1.7 Create Sway Effect When Picking Up Feet
487
13.2 Example 2: Building a Character User Interface
488
13.2.1 Load Saved mrBlah Scene
488
13.2.2 Organize Controls for Users
489
13.2.3 Create mrBlahControls.mel
491
13.2.4 Create Sliders to Control spinCtrl Attributes
495
13.2.5 Create Layout for Window Controls
496
13.2.6 Test Window
497
13.2.7 Display Only What You Want User to See
498
13.2.8 Create Script Node Ibr Window
498
13.2.9 Create Shelf Icon to Reopen Window When Closed
500
13.2.10 Full Text of mrBlahControls.mel
500
Index 507
Rick Parent is a Professor Emeritus in the Computer Science and Engineering Department of Ohio State University (OSU). As a graduate student, Rick worked at the Computer Graphics Research Group (CGRG) at OSU under the direction of Charles Csuri. In 1977, he received his Ph.D. from the Computer and Information Science (CIS) Department, majoring in Artificial Intelligence. For the next three years, he worked at CGRG first as a Research Associate, and then as Associate Director. In 1980 he co-founded and was President of The Computer Animation Company. In 1985, he joined the faculty of the CIS Department (now the Department of Computer Science and Engineering, or CSE) at Ohio State. Rick's research interests include various aspects of computer animation with special focus on animation of the human figure.