Muutke küpsiste eelistusi

E-raamat: Computer-Generated Phase-Only Holograms for 3D Displays: A Matlab Approach

(City University of Hong Kong)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Jan-2021
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108552523
  • Formaat - PDF+DRM
  • Hind: 142,03 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Jan-2021
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108552523

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

'Phase-only Fresnel holograms,' which can be displayed on a single SLM without the need for lenses or complicated optical accessories, substantially simplifies 3-D holographic display systems. Exploring essential concepts, theories, and formulations of these phase-only Fresnel holograms, this book provides comprehensive coverage of modern methods for generating such holograms, which pave the way for commercial products such as compact holographic projectors, heads-up displays, and data security enhancement. Relevant MATLAB codes are provided for readers to implement and evaluate the theories and formulations of different methods, and can be used as a quick start framework for further research and development. This is a crucial and up-to-date treatment of phase-only Fresnel holograms for students and researchers in electrical and electronic engineering, computer science/engineering, applied physics, information technology, and multimedia technology, as well as engineers and scientists in industry developing new products on 3-D displays and holographic projection.

Exploring essential concepts, theories and formulations of phase-only Fresnel holograms, this book provides comprehensive coverage of modern methods for generating such holograms. It is an up-to-date treatment of the topic for engineers in industry, students and researchers in engineering, physics, information technology and multimedia technology.

Arvustused

'MATLAB programs, scattered throughout the book, might be the starting point for further research and be used as an educational tool (there are exercises at the end of each chapter). References are adequate, useful and up-to-date, while the index improves readability. The book is specialized, and I recommend it to those who actively use SLMs for holographic manipulation of light, but it can be useful to a more general community dealing with digital holography.' Dejan Panteli, Optics & Photonics News

Muu info

Explore core concepts, theories and formulations of phase-only Fresnel holograms, which paves the way for 3-D holographic display system.
Preface ix
Acknowledgments xi
1 Introduction to Digital Holography
1(39)
1.1 Basic Concept of Holography
1(4)
1.2 Optical Recording in Practice
5(1)
1.3 Photography
6(1)
1.4 Recording Setup in Optical Holography
7(5)
1.5 Computer-Generated Holography
12(5)
1.5.1 Point-Based Method
14(2)
1.5.2 Layer-Based Method
16(1)
1.6 Reconstruction of Digital Hologram
17(2)
1.7 Capturing Digital Hologram of a Physical Object
19(10)
1.7.1 Capture of Digital Off-Axis Hologram
19(2)
1.7.2 Phase-Shifting Holography
21(4)
1.7.3 Optical Scanning Holography
25(2)
1.7.4 Non-diffractive Optical Scanning Holography
27(2)
1.8 MATLAB Simulation
29(5)
1.8.1 Simulation of Generating a Hologram with the Point-Based Method
29(2)
1.8.2 Simulation of Capturing an Off-Axis Hologram
31(3)
1.8.3 Simulation of Capturing a Digital Fresnel Hologram with Four-Step Phase-Shifting Holography
34(1)
1.9 Summary
34(3)
Exercises
37(1)
References
38(2)
2 Fast Methods for Computer-Generated Holography
40(36)
2.1 Introduction
40(1)
2.2 Realization of CGH with Fourier Transform
41(1)
2.3 Direct Look-Up Table Method
42(2)
2.4 Novel Look-Up Table Method
44(2)
2.5 The Line Scanning Method
46(1)
2.6 The Split-Look-Up-Table (S-LUT) Framework
47(2)
2.7 Compressed Look-Up-Table Method
49(1)
2.8 Wavefront Recording Plane Method
50(5)
2.9 Interpolated WRP Method
55(1)
2.10 The Warped WRP Method
56(5)
2.11 MATLAB Simulation
61(8)
2.11.1 Simulation of Computer-Generated Hologram with the WRP Method
62(1)
2.11.2 Simulation of Computer-Generated Hologram with the Downsampled WRP Method
62(7)
2.11.3 Simulation of Computer-Generated Hologram with the WWRP Method
69(1)
2.12 Summary
69(4)
Exercises
73(1)
References
74(2)
3 Generation of Phase-Only Fresnel Hologram
76(37)
3.1 General View on Holographic Display System
76(3)
3.1.1 Dual SLM Holographic Display System
76(1)
3.1.2 Split SLM Holographic Display System
77(1)
3.1.3 Amplitude-Only SLM Holographic Display System
78(1)
3.2 Iterative Method for Generating Phase-Only Holograms
79(8)
3.2.1 Generating Phase-Only Hologram for a Single-Depth Image
79(2)
3.2.2 Enhanced IFTA: Mixed-Region Amplitude Freedom Method
81(2)
3.2.3 Noise Reduction with IFTA Multiple Frame Averaging
83(2)
3.2.4 Generating Phase-Only Hologram of a Multi-Depth Object with IFTA
85(2)
3.3 Non-iterative Method for Generating Phase-Only Hologram
87(12)
3.3.1 Random Noise Addition
88(1)
3.3.2 Edge-Enhanced Noise-Addition Method
89(1)
3.3.3 One-Step-Phase-Retrieval
90(2)
3.3.4 Patterned Phase-Only Hologram
92(1)
3.3.5 Sampled Phase-Only Hologram
93(3)
3.3.6 Edge-Enhanced Sampled Phase-Only Hologram
96(1)
3.3.7 Complementary Sampled Phase-Only Hologram
97(1)
3.3.8 Binary Phase-Only Hologram
98(1)
3.4 MATLAB Simulation
99(10)
3.4.1 Simulation of Generating a Phase-Only Hologram with IFTA
100(1)
3.4.2 Simulation of Generating a Phase-Only Hologram with the MRAF
100(6)
3.4.3 Simulation of Generating a Phase-Only Hologram of a Two-Layer Object (Double-Depth Image) with the Noise-Addition Method
106(3)
3.4.4 Simulation of Generating a Phase-Only Hologram of a Two-Layer Object with the PPOH Method
109(1)
3.5 Summary
109(1)
Exercises
110(1)
References
111(2)
4 Conversion of Complex-Valued Holograms to Phase-Only Holograms
113(34)
4.1 Introduction
113(1)
4.2 Complex Amplitude Modulation
114(2)
4.3 Double-Phase Macro-Pixel Hologram
116(5)
4.4 Uni-directional Error Diffusion
121(2)
4.5 Bi-directional Error Diffusion
123(2)
4.6 Localized Error Diffusion
125(2)
4.7 Converting a Complex-Valued Hologram to a Binary Phase-Only Hologram with Direct Binary Search
127(2)
4.8 MATLAB Simulation
129(12)
4.8.1 Simulation of Converting a Complex-Valued Hologram into a Phase-Only Hologram with the CAM Method
129(3)
4.8.2 Simulation of Converting a Complex-Valued Hologram into a Phase-Only Hologram with the Double-Phase Macroblock Method
132(3)
4.8.3 Simulation of Converting a Complex-Valued Hologram into a Phase-Only Hologram with the UERD Method
135(3)
4.8.4 Simulation of Converting a Complex-Valued Hologram into a Phase-Only Hologram with the BERD Method
138(3)
4.8.5 Simulation of Converting a Complex-Valued Hologram into a Binary Phase-Only Hologram with the DBS Method
141(1)
4.9 Summary
141(4)
Exercises
145(1)
References
145(2)
5 Applications of Phase-Only Hologram in Display, Holographic Encryption, and Steganography
147(47)
5.1 Introduction
147(1)
5.2 Holographic Projection and Display
147(4)
5.2.1 Spatial Light Modulator
148(2)
5.2.2 Holographic Projection
150(1)
5.2.3 Holographic Display
150(1)
5.3 Holographic Encryption
151(17)
5.3.1 Optical Cryptography
153(1)
5.3.2 Double Random Phase Optical Encryption
154(1)
5.3.3 Single Random Phase Holographic Encryption
155(5)
5.3.4 Enhanced Single Random Phase Holographic Encryption
160(3)
5.3.5 Multiple-Image Holographic Encryption with Arnold Transform
163(5)
5.4 Holographic Steganography
168(8)
5.4.1 Data Embedded Error Diffusion Hologram
169(3)
5.4.2 Image Embedded Error Diffusion Hologram
172(4)
5.5 MATLAB Simulation
176(14)
5.5.1 Simulation of the SRPE Method
176(3)
5.5.2 Simulation on the ESRPE Method
179(4)
5.5.3 Simulation of Multiple-Image Holographic Encryption with Arnold Transform
183(3)
5.5.4 Simulation of Generating a DEED Hologram that Embeds an Image
186(4)
5.6 Summary
190(1)
Exercises
190(1)
References
191(3)
Index 194
Peter Wai Ming Tsang received his Ph.D. degree in electrical and electronic engineering from The University of Hong Kong in 1987. He is currently an Associate Professor with the Department of Electrical Engineering, City University of Hong Kong. Dr Tsang is actively engaged in research on digital holography and three-dimensional technology, focusing on developing methods for generation, processing, and display of hologram. Apart from research findings reported in international journals, conferences, invited talks, he is also an inventor of 28 patents. Dr Tsang has served as Guest Editor/Associate Editor for the IEEE Transaction on Industrial Informatics. He is currently an Editor of the ICT Express (Elsevier). He also served as Topical Editor of the Applied Optics, OSA from 2013 to 2019.