Muutke küpsiste eelistusi

E-raamat: Computer Processing of Remotely-Sensed Images

(Boston University), (University of Nottingham, England)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 06-Apr-2022
  • Kirjastus: Wiley-Blackwell
  • Keel: eng
  • ISBN-13: 9781119502975
  • Formaat - EPUB+DRM
  • Hind: 104,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 06-Apr-2022
  • Kirjastus: Wiley-Blackwell
  • Keel: eng
  • ISBN-13: 9781119502975

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This book is concerned with methods of input, computer processing and output of digital EO data. It is technique-oriented, so that questions such as 'how do I do that?' take precedence over subject-matter oriented ('what does that result mean?'). Naturally, it is impossible to answer the technique-oriented questions without some considerable appreciation of the meaning of the data that is being processed, and vice-versa. The authors therefore assume that a course based on this book is augmented by further courses that deal with applications. These courses can run simultaneously or sequentially. Bringing in real data describing substantial examples is important when teaching practical methodology so that the student experiences the difficulties of experimental design and comprehension of program documentation as well as the morale-reducing moments when it is realised that the technique has not provided the required answers"--

A thorough introduction to computer processing of remotely-sensed images, processing methods, and applications

Remote sensing is a crucial form of measurement that allows for the gauging of an object or space without direct physical contact, allowing for the assessment and recording of a target under conditions which would normally render access difficult or impossible. This is done through the analysis and interpretation of electromagnetic radiation (EMR) that is reflected or emitted by an object, surveyed and recorded by an observer or instrument that is not in contact with the target. This methodology is particularly of importance in Earth observation by remote sensing (EO), wherein airborne or satellite-borne instruments of EMR provide data on the planet’s land, seas, ice, and atmosphere. This permits scientists to establish relationships between the measurements and the nature and distribution of phenomena on the Earth’s surface or within the atmosphere.

Still relying on a visual approach to the material, the fifth edition of this successful textbook provides students with methods of computer processing of remotely sensed data and introducing them to environmental applications which make use of remotely-sensed products. The new edition’s content has been rearranged to be more clearly focused on image processing methods and applications in remote sensing with new examples, including material on the Copernicus missions, microsatellites and recently launched SAR satellites, as well as time series analysis methods.

The fifth edition of Computer Processing of Remotely-Sensed Images also contains:

  • A cohesive presentation of the fundamental components of earth observation remote sensing that is easy to understand and highly digestible
  • Largely non-technical language providing insights into more advanced topics that may be too difficult for a non-mathematician to understand
  • Illustrations and example boxes throughout the book to illustrate concepts, as well as revised examples that reflect the latest information
  • References and links to the most up-to-date online and open access sources used by students

Computer Processing of Remotely-Sensed Images is a useful textbook for advanced undergraduates and postgraduate students taking courses in remote sensing and GIS in Geography, Geology, and Earth/Environmental Science departments.

In Memoriam ix
Preface to the First Edition xi
Preface to the Second Edition xiii
Preface to the Third Edition xvii
Preface to the Fourth Edition xix
Preface to the Fifth Edition xxi
List of Examples xxiii
1 Remote Sensing: Basic Principles 1(30)
1.1 Introduction
1(4)
1.2 Electromagnetic Radiation and Its Properties
5(13)
1.2.1 Terminology
5(1)
1.2.2 Nature of Electromagnetic Radiation
6(1)
1.2.3 The Electromagnetic Spectrum
7(7)
1.2.4 Sources of Electromagnetic Radiation
14(2)
1.2.5 Interactions with the Earth's Atmosphere
16(2)
1.3 Interaction with Earth Surface Materials
18(9)
1.3.1 Introduction
18(2)
1.3.2 Spectral Reflectance of Earth Surface Materials
20(7)
1.4 Summary
27(1)
References
27(4)
2 Remote Sensing Platforms and Sensors 31(44)
2.1 Introduction
31(3)
2.2 Characteristics of Imaging Remote Sensing Instruments
34(8)
2.2.1 Spatial Resolution
34(3)
2.2.2 Spectral Resolution
37(2)
2.2.3 Radiometric Resolution
39(3)
2.3 Optical, Near-infrared, and Thermal Imaging Sensors
42(20)
2.3.1 Along-track Scanning Radiometer (ATSR)
42(1)
2.3.2 Advanced Very High Resolution Radiometer (AVHRR) and Visible Infrared Imager Radiometer Suite (VIIRS)
42(2)
2.3.3 MODIS (MODerate Resolution Imaging Spectrometer)
44(1)
2.3.4 Ocean Observing Instruments
44(4)
2.3.5 IRS LISS
48(1)
2.3.6 Landsat Instruments
48(5)
2.3.7 SPOT Sensors
53(2)
2.3.8 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
55(3)
2.3.9 ESA Sentinel Programme
58(1)
2.3.1 High-resolution Commercial and Small Satellite Systems
59(3)
2.4 Microwave Imaging Sensors
62(8)
2.4.1 European Space Agency Synthetic Aperture Spaceborne Radars
66(1)
2.4.2 Radarsat
67(1)
2.4.3 TerraSAR-X and COSMO-SkyMed
68(1)
2.4.4 ALOS PALSAR
69(1)
2.4.5 Sentinel-1 SAR
70(1)
2.5 Summary
70(1)
References
70(5)
3 Preprocessing of Remotely Sensed Data 75(42)
3.1 Introduction
75(1)
3.2 Cosmetic Operations
76(4)
3.2.1 Missing Scan Lines
77(1)
3.2.2 De-striping Methods
78(2)
3.3 Geometric Correction and Registration
80(18)
3.3.1 Orbital Geometry Model
82(2)
3.3.2 Transformation Based on Ground Control Points
84(10)
3.3.3 Resampling Procedures
94(3)
3.3.4 Image Registration
97(1)
3.3.5 Other Geometric Correction Methods
97(1)
3.4 Atmospheric Correction
98(4)
3.4.1 Background
98(1)
3.4.2 Image-based Methods
99(1)
3.4.3 Radiative Transfer Model
100(1)
3.4.4 Empirical Line Method
101(1)
3.5 Illumination and View Angle Effects
102(1)
3.6 Sensor Calibration
103(5)
3.7 Terrain Effects
108(1)
3.8 Summary
109(1)
References
109(8)
4 Image Enhancement Techniques 117(22)
4.1 Introduction
117(1)
4.2 Human Visual System
118(2)
4.3 Contrast Enhancement
120(13)
4.3.1 Linear Contrast Stretch
120(1)
4.3.2 Histogram Equalisation
121(8)
4.3.3 Gaussian Stretch
129(4)
4.4 Pseudocolour Enhancement
133(4)
4.4.1 Density Slicing
133(1)
4.4.2 Pseudocolour Transform
134(3)
4.5 Summary
137(1)
References
137(2)
5 Image Transforms 139(66)
5.1 Introduction
139(1)
5.2 Arithmetic Operations
140(8)
5.2.1 Image Addition
141(1)
5.2.2 Image Subtraction
141(1)
5.2.3 Image Multiplication
142(1)
5.2.4 Image Division and Vegetation Indices
143(5)
5.3 Empirically Based Image Transforms
148(4)
5.3.1 Perpendicular Vegetation Index
148(1)
5.3.2 Tasselled Cap (Kauth-Thomas) Transformation
149(3)
5.4 Principal Component Analysis
152(10)
5.4.1 Standard Principal Component Analysis
152(8)
5.4.2 Noise-adjusted Principal Component Analysis
160(2)
5.4.3 Decorrelation Stretch
162(1)
5.5 Hue, Saturation, and Intensity (HSI) Transform
162(2)
5.6 The Discrete Fourier Transform
164(8)
5.6.1 Introduction
164(2)
5.6.2 Two-dimensional Fourier Transform
166(3)
5.6.3 Applications of the Fourier Transform
169(3)
5.7 The Discrete Wavelet Transform
172(7)
5.7.1 Introduction
172(1)
5.7.2 The One-dimensional Discrete Wavelet Transform
172(5)
5.7.3 Two-dimensional Discrete Wavelet Transform
177(2)
5.8 Change Detection
179(12)
5.8.1 Introduction
179(1)
5.8.2 NDVI Difference Image
180(1)
5.8.3 Principal Component Analysis
180(2)
5.8.4 Canonical Correlation Change Analysis
182(3)
5.8.5 Time Series Analysis
185(6)
5.8.6 Summary
191(1)
5.9 Image Fusion
191(14)
5.9.1 Introduction
191(2)
5.9.2 Hue, Saturation, and Intensity (HSI) Algorithm
193(1)
5.9.3 Principal Component Analysis
193(1)
5.9.4 Gram-Schmidt Orthogonalisation
193(1)
5.9.5 Wavelet-based Methods
193(1)
5.9.6 Evaluation: Subjective Methods
193(3)
5.9.7 Evaluation: Objective Methods
196(1)
5.10 Summary
197(1)
References
197(8)
6 Filtering Techniques 205(26)
6.1 Introduction
205(1)
6.2 Spatial-domain Low-pass (Smoothing) Filters
206(9)
6.2.1 Moving Average Filter
206(4)
6.2.2 Median Filter
210(2)
6.2.3 Adaptive Filters
212(3)
6.3 Spatial-domain High-pass (Sharpening) Filters
215(5)
6.3.1 Image Subtraction Method
215(1)
6.3.2 Derivative-based Methods
216(4)
6.4 Spatial-domain Edge Detectors
220(2)
6.5 Frequency-domain Filters
222(6)
6.6 Summary
228(1)
References
228(3)
7 Classification 231(66)
7.1 Introduction
231(2)
7.2 Geometrical Basis of Classification
233(2)
7.3 Unsupervised Classification
235(7)
7.3.1 The k-Means Algorithm
235(1)
7.3.2 ISODATA
236(1)
7.3.3 A Modified k-Means Algorithm
237(5)
7.4 Supervised Classification
242(17)
7.4.1 Training Samples
242(5)
7.4.2 Statistical Classifiers
247(5)
7.4.3 Neural Classifiers
252(7)
7.5 Subpixel Classification Techniques
259(9)
7.5.1 The Linear Mixture Model
260(5)
7.5.2 Spectral Angle Mapping
265(1)
7.5.3 Independent Component Analysis
266(1)
7.5.4 Fuzzy Classifiers
267(1)
7.6 More Advanced Approaches to Image Classification
268(5)
7.6.1 Support Vector Machines
268(2)
7.6.2 Decision Trees
270(1)
7.6.3 Other Methods of Classification
271(2)
7.7 Incorporation of Non-spectral Features
273(4)
7.7.1 Texture
273(3)
7.7.2 Use of External Data
276(1)
7.8 Contextual Information
277(1)
7.9 Feature Selection
278(3)
7.10 Classification Accuracy
281(3)
7.11 Summary
284(1)
References
285(12)
8 Advanced Topics 297(44)
8.1 Introduction
297(1)
8.2 SAR Interferometry
297(9)
8.2.1 Basic Principles
297(5)
8.2.2 Interferometric Processing
302(2)
8.2.3 Problems in SAR Interferometry
304(1)
8.2.4 Applications of SAR Interferometry
305(1)
8.3 Imaging Spectroscopy
306(21)
8.3.1 Introduction
306(3)
8.3.2 Processing Imaging Spectroscopy Data
309(18)
8.4 Lidar
327(8)
8.4.1 Introduction
327(3)
8.4.2 Lidar Details
330(2)
8.4.3 Lidar Applications
332(3)
8.5 Summary
335(1)
References
335(6)
Appendix A Computing for Remote Sensing 341(6)
Index 347
Paul M. Mather, PhD, now deceased, was Professor Emeritus at the University of Nottingham, UK.

Magaly Koch, PhD, is a Professor at Boston University, USA.