Muutke küpsiste eelistusi

E-raamat: Computer Recognition Systems 3

Edited by , Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 221,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents latest results in computer recognition systems, pattern recognition, machine learning, web and data mining. It includes coverage of image processing and computer vision; speech and word recognition; and medical applications.



We performpatternrecognitionallthe time inourdailylives,withoutalways being aware of it. We ?rstly observe the world around us by using all our senses(weextractfeaturesfromalargesetofdata).Wesubsequentlyperform pattern recognition by grouping together similar features and giving them a common label. We can identify similar, non-identical events or objects in an e cient way. We can, for example, recognise whether complete strangers are smiling at us or not. This is a computationally demanding task, yet is seemingly trivial for humans. We can easily understand the meaning of printed texts even if the letters belong to a font that is new to us, so long as the new font is “similar” to ones we already know. Yet making machines responsive to “similarity notions” can be singularly problematic. Recognition is strongly linked with prediction: distinguishing between a smile and an angry face may be critical to our immediate future action. The same principle applies to driving in heavy tra c or dealing with many social situations. The successful automation of recognition tasks is not only a major ch- lenge,it is inextricably linkedto the future of ourmodern world.Recognizing tra c ?ow and tra c behaviour (be it roadtra c, air tra c or internet tr- ?c)canleadtogreatere ciencyandsafetyinnavigationgenerally.Recogn- ing biosignals(such asECG or EMG) anddiseasesase ciently aspossible is critical for e ective medical treatment. Modern warfare is not covered here, but its development in the 21st century will also depend critically on newer, faster, more robust recognition systems.
Part I image processing and computer vision.- Part II features, learning and classifiers.- Part III speech and word recognition.- Part IV medical applications.- Part V miscellaneous applications.