Muutke küpsiste eelistusi

E-raamat: Computer Simulation of Liquids

(Director and Titulair Professor of Chemistry, CECAM and École Polytechnique Fédérale de Lausanne), (Emeritus Professor and Visiting Fellow, University of Warwick and University of Bristol)
  • Formaat: 640 pages
  • Ilmumisaeg: 15-Aug-2017
  • Kirjastus: Oxford University Press
  • Keel: eng
  • ISBN-13: 9780192524706
  • Formaat - PDF+DRM
  • Hind: 55,57 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 640 pages
  • Ilmumisaeg: 15-Aug-2017
  • Kirjastus: Oxford University Press
  • Keel: eng
  • ISBN-13: 9780192524706

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This is the second edition of a widely used practical guide to computer simulations of liquids. The technique uses a model for the way molecules interact, to predict how large numbers of them behave in liquid state. This essential introduction to this rapidly growing field is complete with illustrative computer code.

This book provides a practical guide to molecular dynamics and Monte Carlo simulation techniques used in the modelling of simple and complex liquids. Computer simulation is an essential tool in studying the chemistry and physics of condensed matter, complementing and reinforcing both experiment and theory. Simulations provide detailed information about structure and dynamics, essential to understand the many fluid systems that play a key role in our daily lives: polymers, gels, colloidal suspensions, liquid crystals, biological membranes, and glasses. The second edition of this pioneering book aims to explain how simulation programs work, how to use them, and how to interpret the results, with examples of the latest research in this rapidly evolving field. Accompanying programs in Fortran and Python provide practical, hands-on, illustrations of the ideas in the text.

Arvustused

This new edition is a welcome update and has kept the strengths of the first edition and been thoroughly refreshed and expanded for the modern age. Whilst there is now much more competition for a textbook such as this, the new edition stands head-and-shoulders above the others and is therefore strongly recommended. * Matt Probert, Contemporary Physics *

1 Introduction
1(45)
1.1 A short history of computer simulation
1(3)
1.2 Computer simulation: motivation and applications
4(1)
1.3 Model systems and interaction potentials
5(20)
1.4 Constructing an intermolecular potential from first principles
25(4)
1.5 Force fields
29(6)
1.6 Studying small systems
35(11)
2 Statistical mechanics
46(49)
2.1 Sampling from ensembles
46(6)
2.2 Common statistical ensembles
52(6)
2.3 Transforming between ensembles
58(2)
2.4 Simple thermodynamic averages
60(6)
2.5 Fluctuations
66(3)
2.6 Structural quantities
69(4)
2.7 Time correlation functions and transport coefficients
73(6)
2.8 Long-range corrections
79(2)
2.9 Quantum corrections
81(2)
2.10 Constraints
83(2)
2.11 Landau free energy
85(1)
2.12 Inhomogeneous systems
86(4)
2.13 Fluid membranes
90(2)
2.14 Liquid crystals
92(3)
3 Molecular dynamics
95(52)
3.1 Equations of motion for atomic systems
95(2)
3.2 Finite-difference methods
97(9)
3.3 Molecular dynamics of rigid non-spherical bodies
106(7)
3.4 Constraint dynamics
113(7)
3.5 Multiple-timestep algorithms
120(1)
3.6 Checks on accuracy
121(4)
3.7 Molecular dynamics of hard particles
125(5)
3.8 Constant-temperature molecular dynamics
130(10)
3.9 Constant-pressure molecular dynamics
140(4)
3.10 Grand canonical molecular dynamics
144(1)
3.11 Molecular dynamics of polarizable systems
145(2)
4 Monte Carlo methods
147(38)
4.1 Introduction
147(1)
4.2 Monte Carlo integration
147(4)
4.3 Importance sampling
151(4)
4.4 The Metropolis method
155(5)
4.5 Isothermal-isobaric Monte Carlo
160(4)
4.6 Grand canonical Monte Carlo
164(4)
4.7 Semi-grand Monte Carlo
168(1)
4.8 Molecular liquids
169(8)
4.9 Parallel tempering
177(6)
4.10 Other ensembles
183(2)
5 Some tricks of the trade
185(31)
5.1 Introduction
185(1)
5.2 The heart of the matter
185(8)
5.3 Neighbour lists
193(7)
5.4 Non-bonded interactions and multiple timesteps
200(1)
5.5 When the dust has settled
201(3)
5.6 Starting up
204(6)
5.7 Organization of the simulation
210(4)
5.8 Checks on self-consistency
214(2)
6 Long-range forces
216(42)
6.1 Introduction
216(1)
6.2 The Ewald sum
217(7)
6.3 The particle-particle particle-mesh method
224(7)
6.4 Spherical truncation
231(4)
6.5 Reaction field
235(4)
6.6 Fast multipole methods
239(4)
6.7 The multilevel summation method
243(4)
6.8 Maxwell equation molecular dynamics
247(3)
6.9 Long-range potentials in slab geometry
250(4)
6.10 Which scheme to use?
254(4)
7 Parallel simulation
258(13)
7.1 Introduction
258(2)
7.2 Parallel loops
260(2)
7.3 Parallel replica exchange
262(3)
7.4 Parallel domain decomposition
265(4)
7.5 Parallel constraints
269(2)
8 How to analyse the results
271(26)
8.1 Introduction
271(1)
8.2 Liquid structure
272(2)
8.3 Time correlation functions
274(7)
8.4 Estimating errors
281(8)
8.5 Correcting the results
289(8)
9 Advanced Monte Carlo methods
297(45)
9.1 Introduction
297(1)
9.2 Estimation of the free energy
298(19)
9.3 Smarter Monte Carlo
317(16)
9.4 Simulation of phase equilibria
333(5)
9.5 Reactive Monte Carlo
338(4)
10 Rare event simulation
342(13)
10.1 Introduction
342(1)
10.2 Transition state approximation
343(2)
10.3 Bennett-Chandler approach
345(1)
10.4 Identifying reaction coordinates and paths
346(1)
10.5 Transition path sampling
347(3)
10.6 Forward flux and transition interface sampling
350(4)
10.7 Conclusions
354(1)
11 Nonequilibrium molecular dynamics
355(27)
11.1 Introduction
355(2)
11.2 Spatially oscillating perturbations
357(4)
11.3 Spatially homogeneous perturbations
361(9)
11.4 Inhomogeneous systems
370(1)
11.5 Flow in confined geometry
371(5)
11.6 Nonequilibrium free-energy measurements
376(3)
11.7 Practical points
379(2)
11.8 Conclusions
381(1)
12 Mesoscale methods
382(24)
12.1 Introduction
382(1)
12.2 Langevin and Brownian dynamics
383(4)
12.3 Brownian dynamics, molecular dynamics, and Monte Carlo
387(3)
12.4 Dissipative particle dynamics
390(2)
12.5 Multiparticle collision dynamics
392(2)
12.6 The lattice-Boltzmann method
394(3)
12.7 Developing coarse-grained potentials
397(9)
13 Quantum simulations
406(40)
13.1 Introduction
406(2)
13.2 Ab-initio molecular dynamics
408(12)
13.3 Combining quantum and classical force-field simulations
420(6)
13.4 Path-integral simulations
426(11)
13.5 Quantum random walk simulations
437(5)
13.6 Over our horizon
442(4)
14 Inhomogeneous fluids
446(35)
14.1 The planar gas-liquid interface
446(16)
14.2 The gas-liquid interface of a molecular fluid
462(2)
14.3 The liquid-liquid interface
464(1)
14.4 The solid-liquid interface
464(5)
14.5 The liquid drop
469(6)
14.6 Fluid membranes
475(4)
14.7 Liquid crystals
479(2)
Appendix A Computers and computer simulation
481(6)
A.1 Computer hardware
481(1)
A.2 Programming languages
482(1)
A.3 Fortran programming considerations
483(4)
Appendix B Reduced units
487(4)
B.1 Reduced units
487(4)
Appendix C Calculation of forces and torques
491(10)
C.1 Introduction
491(1)
C.2 The polymer chain
491(3)
C.3 The molecular fluid with multipoles
494(2)
C.4 The triple-dipole potential
496(1)
C.5 Charged particles using Ewald sum
497(1)
C.6 The Gay-Berne potential
498(2)
C.7 Numerically testing forces and torques
500(1)
Appendix D Fourier transforms and series
501(8)
D.1 The Fourier transform
501(1)
D.2 Spatial Fourier transforms and series
502(2)
D.3 The discrete Fourier transform
504(1)
D.4 Numerical Fourier transforms
505(4)
Appendix E Random numbers
509(8)
E.1 Random number generators
509(1)
E.2 Uniformly distributed random numbers
510(1)
E.3 Generating non-uniform distributions
511(3)
E.4 Random vectors on the surface of a sphere
514(1)
E.5 Choosing randomly and uniformly from complicated regions
515(1)
E.6 Generating a random permutation
516(1)
Appendix F Configurational temperature
517(4)
F.1 Expression for configurational temperature
517(1)
F.2 Implementation details
517(4)
List of Acronyms 521(6)
List of Greek Symbols 527(2)
List of Roman Symbols 529(4)
List of Examples 533(1)
List of Codes 534(2)
Bibliography 536(86)
Index 622
Michael Allen obtained his first degree, and doctorate, in Chemistry at the University of Oxford. After post-doctoral positions at UCLA and Oxford, he was, in 1985, appointed Lecturer, then Reader, and finally Professor in Physics at the University of Bristol. In 2001 he became founding Director of the Centre for Scientific Computing in Warwick, where he stayed in Physics until retirement in 2014.

Allen was awarded an Alexander von Humboldt Foundation Forschungspreis in 1999, visiting Mainz (University and MPI for Polymer Research). He received the 2015 Lennard-Jones award and lectureship from the Royal Society of Chemistry Statistical Mechanics and Thermodynamics Group, and the Thermodynamics Conference series.

Dominic Tildesley obtained his first degree at the University of Southampton, and his doctorate in Chemistry at the University of Oxford. After post-doctoral positions at Penn State and Cornell, he was appointed Lecturer, then Reader, and Professor in Chemistry at the University of Southampton. In 1998 he became Head of Physical Sciences at Unilever Research and Development, Port Sunlight and in 2004, Chief Scientist of the Home and Personal Care Division. In 2013, he was appointed as Director of the Centre Européen de Calcul Atomique et Moleculaire at the EPFL in Switzerland. Tildesley was awarded the Marlow and Tilden medals of the Royal Society of Chemistry and a CBE for services to science, technology and business.