Muutke küpsiste eelistusi

E-raamat: Computer Vision - ACCV 2020: 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 - December 4, 2020, Revised Selected Papers, Part VI

Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The six volume set of LNCS 12622-12627 constitutes the proceedings of the 15th Asian Conference on Computer Vision, ACCV 2020, held in Kyoto, Japan, in November/ December 2020.*The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics:





Part I: 3D computer vision; segmentation and grouping





Part II: low-level vision, image processing; motion and tracking





Part III: recognition and detection; optimization, statistical methods, and learning; robot vision





Part IV: deep learning for computer vision, generative models for computer vision





Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis





Part VI: applications of computer vision; vision for X; datasets and performance analysis





*The conference was held virtually.
Applications of Computer Vision, Vision for X.- Query by Strings and Return Ranking Word Regions with Only One Look.- Single-Image Camera Response Function Using Prediction Consistency and Gradual Refinement.- FootNet: An efficient convolutional network for multiview 3D foot reconstruction.- Synthetic-to-real domain adaptation for lane detection.- RAF-AU Database: In-the-Wild Facial Expressions with Subjective Emotion Judgement and Objective AU Annotations.- DoFNet: Depth of Field Difference Learning for Detecting Image Forgery.- Explaining image classifiers by removing input features using generative models.- Do We Need Sound for Sound Source Localization?.- Modular Graph Attention Network for Complex Visual Relational Reasoning.- CloTH-VTON: Clothing Three-dimensional reconstruction for Hybrid image-based Virtual Try-ON.- Multi-label X-ray Imagery Classification via Bottom-up Attention and Meta Fusion.- Learning End-to-End Action Interaction by Paired-Embedding Data Augmentation.- Sketch-to-Art: Synthesizing Stylized Art Images From Sketches.- Road Obstacle Detection Method Based on an Autoencoder with Semantic Segmentation.- SpotPatch: Parameter-Efficient Transfer Learning for Mobile Object Detection.- Trainable Structure Tensors for Autonomous Baggage Threat Detection Under Extreme Occlusion.- Audiovisual Transformer with Instance Attention for Audio-Visual Event Localization.- Watch, read and lookup: learning to spot signs from multiple supervisors.- Domain-transferred Face Augmentation Network.- Pose Correction Algorithm for Relative Frames between Keyframes in SLAM.- Dense-Scale Feature Learning in Person Re-Identification.- Class-incremental Learning with Rectified Feature-Graph Preservation.- Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation.- Towards Robust Fine-grained Recognition by Maximal Separation of Discriminative Features.- Visually Guided Sound Source Separation using Cascaded Opponent Filter Network.- Channel Recurrent Attention Networks for Video Pedestrian Retrieval.- In Defense of LSTMs for Addressing Multiple Instance Learning Problems.- Addressing Class Imbalance in Scene Graph Parsing by Learning to Contrast and Score.- Show, Conceive and Tell: Image Captioning with Prospective Linguistic Information.- Datasets and Performance Analysis.- RGB-T Crowd Counting from Drone: A Benchmark and MMCCN Network.- Webly Supervised Semantic Embeddings for Large Scale Zero-Shot Learning.- Compensating for the Lack of Extra Training Data by Learning Extra Representation.- Class-Wise Difficulty-Balanced Loss for Solving Class-Imbalance.- OpenTraj: Assessing Prediction Complexity in Human Trajectories Datasets.- Pre-training without Natural Images.- TTPLA: An Aerial-Image Dataset for Detection and Segmentation of Transmission Towers and Power Lines.- A Day on Campus - An Anomaly Detection Dataset for Events in a Single Camera.- A Benchmark and Baseline for Language-Driven Image Editing.- Self-supervised Learning of Orc-Bert Augmentator for Recognizing Few-Shot Oracle Characters.- Understanding Motion in Sign Language: A New Structured Translation Dataset.- FreezeNet: Full Performance by Reduced Storage Costs.