Muutke küpsiste eelistusi

E-raamat: Computer Vision - ECCV 2024: 18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part XIX

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 80,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29October 4, 2024.





The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation.





 
NeuSDFusion: A Spatial-Aware Generative Model for 3D Shape Completion,
Reconstruction, and Generation.- AID-AppEAL: Automatic Image Dataset and
Algorithm for Content Appeal Enhancement and Assessment Labeling.- SEDiff:
Structure Extraction for Domain Adaptive Depth Estimation via Denoising
Diffusion Models.- Quantized Prompt for Efficient Generalization of
Vision-Language Models.- Online Temporal Action Localization with
Memory-Augmented Transformer.- Efficient Cascaded Multiscale Adaptive Network
for Image Restoration.- MOFA-Video: Controllable Image Animation via
Generative Motion Field Adaptions in Frozen Image-to-Video Diffusion Model.-
Occlusion-Aware Seamless Segmentation.- OpenKD: Opening Prompt Diversity for
Zero- and Few-shot Keypoint Detection.- Referring Atomic Video Action
Recognition.- Agent3D-Zero:  An Agent for Zero-shot 3D Understanding.- Stream
Query Denoising for Vectorized HD-Map Construction.- SAGS: Structure-Aware 3D
Gaussian Splatting.- Spherical Linear Interpolation and Text-Anchoring for
Zero-shot Composed Image Retrieval.- OneRestore: A Universal Restoration
Framework for Composite Degradation.- Beat-It: Beat-Synchronized
Multi-Condition 3D Dance Generation.- SkyMask: Attack-agnostic Robust
Federated Learning with Fine-grained Learnable Masks.- Bag of Tricks to Boost
Adversarial Transferability.- RePOSE: 3D Human Pose Estimation via
Spatio-Temporal Depth Relational Consistency.- Pixel-GS Density Control with
Pixel-aware Gradient for 3D Gaussian Splatting.- WorldPose: A World Cup
Dataset for Global 3D Human Pose Estimation.- A Unified Framework for
Gradient-based Saliency Map Generation of Black-box Models.- Language-Driven
6-DoF Grasp Detection Using Negative Prompt Guidance.- COIN-Matting:
Confounder Intervention for Image Matting.- SHINE: Saliency-aware
HIerarchical NEgative Ranking for Compositional Temporal Grounding.-
Audio-driven Talking Face Generation with Stabilized Synchronization Loss.-
Propose, Assess, Search: Harnessing LLMs for Goal-Oriented Planning in
Instructional Videos.