Muutke küpsiste eelistusi

E-raamat: Computer Vision - ECCV 2024: 18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part X

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 80,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29October 4, 2024.





The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation.
Modeling and Driving Human Body Soundfields through Acoustic
Primitives.- m&ms: A Benchmark to Evaluate Tool-Use for multi-step
multi-modal Tasks.- Label-anticipated Event Disentanglement for Audio-Visual
Video Parsing.- High-Fidelity 3D Textured Shapes Generation by Sparse
Encoding and Adversarial Decoding.- Semi-Supervised Video Desnowing Network
via Temporal Decoupling Experts and Distribution-Driven Contrastive
Regularization.- I-MedSAM: Implicit Medical Image Segmentation with Segment
Anything.- ReMamber: Referring Image Segmentation with Mamba Twister.-
TalkingGaussian: Structure-Persistent 3D Talking Head Synthesis via Gaussian
Splatting.- CAT: Enhancing Multimodal Large Language Model to Answer
Questions in Dynamic Audio-Visual Scenarios.- Segmentation-guided Layer-wise
Image Vectorization with Gradient Fills.- Implicit Style-Content Separation
using B-LoRA.- OpenPSG: Open-set Panoptic Scene Graph Generation via Large
Multimodal Models.- ActionVOS: Actions as Prompts for Video Object
Segmentation.- FALIP: Visual Prompt as Foveal Attention Boosts CLIP Zero-Shot
Performance.- U-COPE: Taking a Further Step to Universal 9D Category-level
Object Pose Estimation.- Integrating Markov Blanket Discovery into Causal
Representation Learning for Domain Generalization.- Rotary Position Embedding
for Vision Transformer.- Local All-Pair Correspondence for Point Tracking.-
MonoWAD: Weather-Adaptive Diffusion Model for Robust Monocular 3D Object
Detection.- ReALFRED: An Embodied Instruction Following Benchmark in
Photo-Realistic Environments.- S^3D-NeRF: Single-Shot Speech-Driven Neural
Radiance Field for High Fidelity Talking Head Synthesis.- ActionSwitch:
Class-agnostic Detection of Simultaneous Actions in Streaming Videos.-
Hierarchically Structured Neural Bones for Reconstructing Animatable Objects
from Casual Videos.- PQ-SAM: Post-training Quantization for Segment Anything
Model.- CPM: Class-conditional Prompting Machine for Audio-visual
Segmentation.- Optimizing Factorized Encoder Models: Time and Memory
Reduction for Scalable and Efficient Action Recognition.- DVLO: Deep
Visual-LiDAR Odometry with Local-to-Global Feature Fusion and Bi-Directional
Structure Alignment.