Muutke küpsiste eelistusi

E-raamat: Computer Vision - ECCV 2024: 18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part XXX

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 80,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29October 4, 2024.





The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation.
SemanticHuman-HD: High Resolution Semantic disentangled 3D Human
Generation.- CoherentGS: Sparse Novel View Synthesis with Coherent 3D
Gaussians.- Monocular Occupancy Prediction for Scalable Indoor Scenes.-
Visual Grounding for Object-Level Generalization in Reinforcement Learning.-
3DEgo: 3D Editing on the Go!.- Efficient Depth-Guided Urban View Synthesis.-
Probabilistic Weather Forecasting with Deterministic Guidance-based Diffusion
Model.- Domain-adaptive Video Deblurring via Test-time Blurring.-
Representing Topological Self-Similarity Using Fractal Feature Maps for
Accurate Segmentation of Tubular Structures.- NeuroNCAP: Photorealistic
Closed-loop Safety Testing for Autonomous Driving.- OLAF: A Plug-and-Play
Framework for Enhanced Multi-object Multi-part Scene Parsing.- Progressive
Pretext Task Learning for Human Trajectory Prediction.- Hyperion A fast,
versatile symbolic Gaussian Belief Propagation framework for Continuous-Time
SLAM.- Isomorphic Pruning for Vision Models.- Attention Prompting on Image
for Large Vision-Language Models.- Learning Cross-hand Policies of High-DOF
Reaching and Grasping.- Reprojection Errors as Prompts for Efficient Scene
Coordinate Regression.- Diffusion-Driven Data Replay: A Novel Approach to
Combat Forgetting in Federated Class Continual Learning.- Long-Tail Temporal
Action Segmentation with Group-wise Temporal Logit Adjustment.- REVISION:
Rendering Tools Enable Spatial Fidelity in Vision-Language Models.-
DreamMotion: Space-Time Self-Similar Score Distillation for Zero-Shot Video
Editing.- VideoClusterNet: Self-Supervised and Adaptive Face Clustering for
Videos.- Unveiling Privacy Risks in Stochastic Neural Networks Training:
Effective Image Reconstruction from Gradients.- Controlling the World by
Sleight of Hand.- Hiding Imperceptible Noise in Curvature-Aware Patches for
3D Point Cloud Attack.- Interleaving One-Class and Weakly-Supervised Models
with Adaptive Thresholding for Unsupervised Video Anomaly Detection.-
Cross-Domain Learning for Video Anomaly Detection with Limited Supervision.