About the Author |
|
xxvii | |
Acknowledgments |
|
xxix | |
Introduction |
|
xxxi | |
|
Chapter 1 Image Capture and Representation |
|
|
1 | (38) |
|
|
1 | (7) |
|
|
2 | (1) |
|
|
3 | (1) |
|
Sensor Configurations: Mosaic, Foveon, BSI |
|
|
4 | (2) |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
Color and Lighting Corrections |
|
|
7 | (1) |
|
|
7 | (1) |
|
Cameras and Computational Imaging |
|
|
8 | (16) |
|
Overview of Computational Imaging |
|
|
8 | (1) |
|
Single-Pixel Computational Cameras |
|
|
9 | (1) |
|
|
10 | (2) |
|
|
12 | (2) |
|
|
14 | (3) |
|
Structured and Coded Light |
|
|
17 | (2) |
|
Optical Coding: Diffraction Gratings |
|
|
19 | (1) |
|
|
20 | (2) |
|
|
22 | (1) |
|
|
22 | (1) |
|
Plenoptics: Light Field Cameras |
|
|
23 | (1) |
|
|
24 | (11) |
|
|
25 | (1) |
|
Problems in Depth Sensing and Processing |
|
|
25 | (1) |
|
The Geometric Field and Distortions |
|
|
26 | (1) |
|
The Horopter Region, Panum's Area, and Depth Fusion |
|
|
26 | (1) |
|
Cartesian vs. Polar Coordinates: Spherical Projective Geometry |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
30 | (1) |
|
Surface Reconstruction and Fusion |
|
|
30 | (2) |
|
|
32 | (1) |
|
Monocular Depth Processing |
|
|
32 | (1) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
34 | (1) |
|
Optical Flow, SLAM, and SFM |
|
|
34 | (1) |
|
3D Representations: Voxels, Depth Maps, Meshes, and Point Clouds |
|
|
35 | (2) |
|
|
37 | (2) |
|
Chapter 2 Image Pre-Processing |
|
|
39 | (46) |
|
Perspectives on Image Processing |
|
|
39 | (1) |
|
Problems to Solve During Image Pre-Processing |
|
|
40 | (10) |
|
Vision Pipelines and Image Pre-Processing |
|
|
40 | (2) |
|
|
42 | (1) |
|
|
43 | (1) |
|
Preparing Images for Feature Extraction |
|
|
43 | (1) |
|
Local Binary Family Pre-Processing |
|
|
43 | (2) |
|
Spectra Family Pre-Processing |
|
|
45 | (1) |
|
Basis Space Family Pre-Processing |
|
|
46 | (1) |
|
Polygon Shape Family Pre-Processing |
|
|
47 | (3) |
|
The Taxonomy of Image Processing Methods |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
51 | (6) |
|
Overview of Color Management Systems |
|
|
52 | (1) |
|
Illuminants, White Point, Black Point, and Neutral Axis |
|
|
53 | (1) |
|
|
54 | (1) |
|
Color Spaces and Color Perception |
|
|
55 | (1) |
|
Gamut Mapping and Rendering Intent |
|
|
55 | (1) |
|
Practical Considerations for Color Enhancements |
|
|
56 | (1) |
|
Color Accuracy and Precision |
|
|
57 | (1) |
|
|
57 | (7) |
|
Convolutional Filtering and Detection |
|
|
58 | (2) |
|
Kernel Filtering and Shape Selection |
|
|
60 | (1) |
|
Shape Selection or Forming Kernels |
|
|
61 | (1) |
|
|
61 | (2) |
|
Noise and Artifact Filtering |
|
|
63 | (1) |
|
Integral Images and Box Filters |
|
|
63 | (1) |
|
|
64 | (3) |
|
Kernel Sets: Sobel, Scharr, Prewitt, Roberts, Kirsch, Robinson, and Frei-Chen |
|
|
64 | (2) |
|
|
66 | (1) |
|
Transform Filtering, Fourier, and Others |
|
|
67 | (4) |
|
|
67 | (1) |
|
|
67 | (3) |
|
Fourier Family of Transforms |
|
|
70 | (1) |
|
|
70 | (1) |
|
Morphology and Segmentation |
|
|
71 | (6) |
|
|
72 | (1) |
|
Gray Scale and Color Morphology |
|
|
73 | (1) |
|
Morphology Optimizations and Refinements |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
74 | (1) |
|
Graph-based Super-Pixel Methods |
|
|
75 | (1) |
|
Gradient-Ascent-Based Super-Pixel Methods |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
77 | (6) |
|
|
77 | (1) |
|
Histogram Peaks and Valleys, and Hysteresis Thresholds |
|
|
78 | (1) |
|
LUT Transforms, Contrast Remapping |
|
|
78 | (1) |
|
Histogram Equalization and Specification |
|
|
79 | (1) |
|
|
80 | (1) |
|
|
81 | (1) |
|
Local Histogram Equalization |
|
|
81 | (1) |
|
Integral Image Contrast Filters |
|
|
81 | (1) |
|
Local Auto Threshold Methods |
|
|
82 | (1) |
|
|
83 | (2) |
|
Chapter 3 Global and Regional Features |
|
|
85 | (46) |
|
Historical Survey of Features |
|
|
85 | (8) |
|
Key Ideas: Global, Regional, and Local |
|
|
86 | (1) |
|
1960s, 1970s, 1980s---Whole-Object Approaches |
|
|
87 | (1) |
|
Early 1990s---Partial-Object Approaches |
|
|
87 | (1) |
|
Mid-1990s---Local Feature Approaches |
|
|
87 | (1) |
|
Late 1990s---Classified Invariant Local Feature Approaches |
|
|
88 | (1) |
|
Early 2000s---Scene and Object Modeling Approaches |
|
|
88 | (1) |
|
Mid-2000s---Finer-Grain Feature and Metric Composition Approaches |
|
|
88 | (1) |
|
Post-2010---Multi-Modal Feature Metrics Fusion |
|
|
88 | (1) |
|
|
89 | (1) |
|
1950s thru 1970s---Global Uniform Texture Metrics |
|
|
90 | (1) |
|
1980s---Structural and Model-Based Approaches for Texture Classification |
|
|
91 | (1) |
|
1990s---Optimizations and Refinements to Texture Metrics |
|
|
91 | (1) |
|
2000 to Today---More Robust Invariant Texture Metrics and 3D Texture |
|
|
92 | (1) |
|
|
92 | (1) |
|
|
93 | (16) |
|
|
93 | (1) |
|
|
94 | (1) |
|
|
94 | (1) |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
95 | (1) |
|
Edge Primitive Length Total |
|
|
96 | (1) |
|
Cross-Correlation and Auto-Correlation |
|
|
96 | (1) |
|
Fourier Spectrum, Wavelets, and Basis Signatures |
|
|
96 | (1) |
|
Co-Occurrence Matrix, Haralick Features |
|
|
97 | (3) |
|
|
100 | (1) |
|
|
101 | (1) |
|
|
101 | (1) |
|
Metric 3 Low-Frequency Coverage |
|
|
102 | (1) |
|
Metric 4 Corrected Coverage |
|
|
102 | (1) |
|
|
102 | (1) |
|
|
103 | (1) |
|
Metric 7 Locus Mean Density |
|
|
103 | (1) |
|
|
103 | (1) |
|
Metric 9 Bin Mean Density |
|
|
104 | (1) |
|
|
104 | (1) |
|
|
104 | (2) |
|
Metric 12 Linearity Strength |
|
|
106 | (1) |
|
|
106 | (2) |
|
LBP Local Binary Patterns |
|
|
108 | (1) |
|
|
108 | (1) |
|
Statistical Region Metrics |
|
|
109 | (9) |
|
|
109 | (1) |
|
|
110 | (2) |
|
|
112 | (1) |
|
|
113 | (1) |
|
Scatter Diagrams, 3D Histograms |
|
|
113 | (4) |
|
Multi-Resolution, Multi-Scale Histograms |
|
|
117 | (1) |
|
|
118 | (1) |
|
Contour or Edge Histograms |
|
|
118 | (1) |
|
|
118 | (11) |
|
|
121 | (1) |
|
|
122 | (1) |
|
|
123 | (1) |
|
|
123 | (1) |
|
|
124 | (1) |
|
|
124 | (1) |
|
Karhunen-Loeve Transform and Hotelling Transform |
|
|
125 | (1) |
|
Wavelet Transform and Gabor Filters |
|
|
125 | (2) |
|
|
127 | (1) |
|
Hough Transform and Radon Transform |
|
|
127 | (2) |
|
|
129 | (2) |
|
Chapter 4 Local Feature Design Concepts, Classification, and Learning |
|
|
131 | (60) |
|
|
132 | (2) |
|
Detectors, Interest Points, Keypoints, Anchor Points, Landmarks |
|
|
132 | (1) |
|
Descriptors, Feature Description, Feature Extraction |
|
|
133 | (1) |
|
Sparse Local Pattern Methods |
|
|
133 | (1) |
|
|
134 | (4) |
|
Choosing Feature Descriptors and Interest Points |
|
|
134 | (1) |
|
Feature Descriptors and Feature Matching |
|
|
134 | (1) |
|
|
134 | (2) |
|
Repeatability, Easy vs. Hard to Find |
|
|
136 | (1) |
|
Distinctive vs. Indistinctive |
|
|
137 | (1) |
|
Relative and Absolute Position |
|
|
137 | (1) |
|
Matching Cost and Correspondence |
|
|
137 | (1) |
|
|
138 | (6) |
|
Early Work on Distance Functions |
|
|
138 | (1) |
|
Euclidean or Cartesian Distance Metrics |
|
|
139 | (1) |
|
|
139 | (1) |
|
Squared Euclidean Distance |
|
|
140 | (1) |
|
Cosine Distance or Similarity |
|
|
140 | (1) |
|
Sum of Absolute Differences (SAD) or L1 Norm |
|
|
140 | (1) |
|
Sum of Squared Differences (SSD) or L2 Norm |
|
|
140 | (1) |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
Statistical Difference Metrics |
|
|
142 | (1) |
|
Earth Movers Distance (EMD) or Wasserstein Metric |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
143 | (1) |
|
|
143 | (1) |
|
Binary or Boolean Distance Metrics |
|
|
143 | (1) |
|
|
143 | (1) |
|
|
144 | (1) |
|
Jaccard Similarity and Dissimilarity |
|
|
144 | (1) |
|
Descriptor Representation |
|
|
144 | (3) |
|
Coordinate Spaces, Complex Spaces |
|
|
144 | (1) |
|
|
145 | (1) |
|
Polar and Log Polar Coordinates |
|
|
145 | (1) |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
146 | (1) |
|
Multivariate Spaces, Multimodal Data |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
147 | (2) |
|
Interest Point and Descriptor Culling |
|
|
147 | (1) |
|
Dense vs. Sparse Feature Description |
|
|
148 | (1) |
|
Descriptor Shape Topologies |
|
|
149 | (4) |
|
|
149 | (1) |
|
|
149 | (1) |
|
Single Patches, Sub-Patches |
|
|
149 | (1) |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
150 | (1) |
|
Strip and Radial Fan Shapes |
|
|
151 | (1) |
|
|
151 | (1) |
|
|
152 | (1) |
|
Morphological Boundary Shapes |
|
|
152 | (1) |
|
|
153 | (1) |
|
Super-Pixel Similarity Shapes |
|
|
153 | (1) |
|
Local Binary Descriptor Point-Pair Patterns |
|
|
153 | (4) |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
156 | (1) |
|
Descriptor Discrimination |
|
|
157 | (9) |
|
|
158 | (1) |
|
Region, Shapes, and Pattern Discrimination |
|
|
159 | (1) |
|
Geometric Discrimination Factors |
|
|
160 | (1) |
|
Feature Visualization to Evaluate Discrimination |
|
|
160 | (1) |
|
Discrimination via Image Reconstruction from HOG |
|
|
160 | (1) |
|
Discrimination via Image Reconstruction from Local Binary Patterns |
|
|
161 | (1) |
|
Discrimination via Image Reconstruction from SIFT Features |
|
|
162 | (1) |
|
|
163 | (2) |
|
Accuracy Optimizations, Sub-Region Overlap, Gaussian Weighting, and Pooling |
|
|
165 | (1) |
|
|
165 | (1) |
|
Search Strategies and Optimizations |
|
|
166 | (6) |
|
|
166 | (1) |
|
|
166 | (1) |
|
Multi-Scale Pyramid Search |
|
|
167 | (1) |
|
Scale Space and Image Pyramids |
|
|
168 | (1) |
|
|
169 | (1) |
|
Sparse Predictive Search and Tracking |
|
|
170 | (1) |
|
Tracking Region-Limited Search |
|
|
170 | (1) |
|
Segmentation Limited Search |
|
|
171 | (1) |
|
Depth or Z Limited Search |
|
|
171 | (1) |
|
Computer Vision, Models, Organization |
|
|
172 | (16) |
|
|
172 | (1) |
|
|
173 | (2) |
|
|
175 | (1) |
|
Selection of Detectors and Features |
|
|
175 | (1) |
|
Manually Designed Feature Detectors |
|
|
175 | (1) |
|
Statistically Designed Feature Detectors |
|
|
175 | (1) |
|
|
176 | (1) |
|
|
176 | (1) |
|
Classification of Features and Objects |
|
|
177 | (1) |
|
Group Distance: Clustering, Training, and Statistical Learning |
|
|
177 | (1) |
|
Group Distance: Clustering Methods Survey, KNN, RANSAC, K-Means, GMM, SVM, Others |
|
|
178 | (2) |
|
Classification Frameworks, REIN, MOPED |
|
|
180 | (1) |
|
|
181 | (1) |
|
|
181 | (1) |
|
Selected Examples of Classification |
|
|
182 | (1) |
|
Feature Learning, Sparse Coding, Convolutional Networks |
|
|
183 | (1) |
|
Terminology: Codebooks, Visual Vocabulary, Bag of Words, Bag of Features |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
185 | (1) |
|
Learned Detectors via Convolutional Filter Masks |
|
|
186 | (1) |
|
Convolutional Neural Networks, Neural Networks |
|
|
186 | (2) |
|
Deep Learning, Pooling, Trainable Feature Hierarchies |
|
|
188 | (1) |
|
|
188 | (3) |
|
Chapter 5 Taxonomy of Feature Description Attributes |
|
|
191 | (26) |
|
Feature Descriptor Families |
|
|
192 | (1) |
|
Prior Work on Computer Vision Taxonomies |
|
|
193 | (1) |
|
|
194 | (1) |
|
General Robustness Taxonomy |
|
|
195 | (4) |
|
|
196 | (1) |
|
|
196 | (1) |
|
|
197 | (1) |
|
|
197 | (1) |
|
|
198 | (1) |
|
Efficiency Variables, Costs and Benefits |
|
|
199 | (1) |
|
Discrimination and Uniqueness |
|
|
199 | (1) |
|
General Vision Metrics Taxonomy |
|
|
199 | (13) |
|
Feature Descriptor Family |
|
|
201 | (1) |
|
|
201 | (1) |
|
|
201 | (4) |
|
|
205 | (1) |
|
|
206 | (1) |
|
|
206 | (1) |
|
|
207 | (1) |
|
|
207 | (1) |
|
|
207 | (1) |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
211 | (1) |
|
|
211 | (1) |
|
Euclidean or Cartesian Distance Family |
|
|
211 | (1) |
|
|
212 | (1) |
|
Statistical Distance Family |
|
|
212 | (1) |
|
Binary or Boolean Distance Family |
|
|
212 | (1) |
|
Feature Metric Evaluation |
|
|
212 | (4) |
|
Efficiency Variables, Costs and Benefits |
|
|
213 | (1) |
|
Image Reconstruction Efficiency Metric |
|
|
213 | (1) |
|
Example Feature Metric Evaluations |
|
|
213 | (1) |
|
|
213 | (1) |
|
Vision Metric Taxonomy FME |
|
|
214 | (1) |
|
General Robustness Attributes |
|
|
214 | (1) |
|
|
214 | (1) |
|
Vision Metric Taxonomy FME |
|
|
214 | (1) |
|
General Robustness Attributes |
|
|
215 | (1) |
|
|
215 | (1) |
|
Vision Metric Taxonomy FME |
|
|
215 | (1) |
|
General Robustness Attributes |
|
|
216 | (1) |
|
|
216 | (1) |
|
Chapter 6 Interest Point Detector and Feature Descriptor Survey |
|
|
217 | (66) |
|
|
218 | (1) |
|
|
218 | (3) |
|
Interest Point Method Survey |
|
|
221 | (6) |
|
Laplacian and Laplacian of Gaussian |
|
|
222 | (1) |
|
|
222 | (1) |
|
Harris Methods, Harris-Stephens, Shi-Tomasi, and Hessian-Type Detectors |
|
|
222 | (1) |
|
Hessian Matrix Detector and Hessian-Laplace |
|
|
223 | (1) |
|
|
223 | (1) |
|
|
224 | (1) |
|
SUSAN, and Trajkovic and Hedly |
|
|
224 | (1) |
|
|
225 | (1) |
|
|
226 | (1) |
|
Morphological Interest Regions |
|
|
227 | (1) |
|
Feature Descriptor Survey |
|
|
227 | (14) |
|
|
228 | (1) |
|
|
228 | (3) |
|
|
231 | (1) |
|
|
231 | (1) |
|
|
232 | (1) |
|
|
232 | (1) |
|
Rotation Invariant LBP (RILBP) |
|
|
232 | (1) |
|
Dynamic Texture Metric Using 3D LBPs |
|
|
233 | (1) |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
234 | (3) |
|
|
237 | (1) |
|
Modified Census Transform |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
241 | (28) |
|
|
241 | (1) |
|
Create a Scale Space Pyramid |
|
|
242 | (2) |
|
Identify Scale-Invariant Interest Points |
|
|
244 | (1) |
|
Create Feature Descriptors |
|
|
244 | (2) |
|
|
246 | (1) |
|
|
246 | (1) |
|
|
247 | (1) |
|
|
247 | (1) |
|
|
248 | (1) |
|
|
249 | (2) |
|
|
251 | (1) |
|
|
252 | (2) |
|
Viola Jones with HAAR-Like Features |
|
|
254 | (1) |
|
|
254 | (2) |
|
|
256 | (1) |
|
Histogram of Gradients (HOG) and Variants |
|
|
257 | (1) |
|
|
258 | (2) |
|
|
260 | (1) |
|
|
261 | (2) |
|
Robust Fast Feature Matching |
|
|
263 | (1) |
|
|
264 | (2) |
|
|
266 | (1) |
|
|
266 | (1) |
|
|
267 | (1) |
|
|
268 | (1) |
|
|
269 | (3) |
|
|
269 | (2) |
|
Other Basis Functions for Descriptor Building |
|
|
271 | (1) |
|
|
271 | (1) |
|
Examples of Sparse Coding Methods |
|
|
271 | (1) |
|
Polygon Shape Descriptors |
|
|
272 | (6) |
|
|
273 | (1) |
|
Object Shape Metrics for Blobs and Polygons |
|
|
274 | (3) |
|
|
277 | (1) |
|
3D, 4D, Volumetric, and Multimodal Descriptors |
|
|
278 | (4) |
|
|
279 | (1) |
|
|
280 | (1) |
|
|
280 | (2) |
|
|
282 | (1) |
|
Chapter 7 Ground Truth Data, Content, Metrics, and Analysis |
|
|
283 | (30) |
|
What Is Ground Truth Data? |
|
|
284 | (2) |
|
Previous Work on Ground Truth Data: Art vs. Science |
|
|
286 | (3) |
|
General Measures of Quality Performance |
|
|
286 | (1) |
|
Measures of Algorithm Performance |
|
|
286 | (1) |
|
|
287 | (2) |
|
Key Questions For Constructing Ground Truth Data |
|
|
289 | (5) |
|
Content: Adopt, Modify, or Create |
|
|
289 | (1) |
|
Survey Of Available Ground Truth Data |
|
|
289 | (1) |
|
Fitting Data to Algorithms |
|
|
290 | (1) |
|
Scene Composition and Labeling |
|
|
291 | (1) |
|
|
292 | (1) |
|
|
293 | (1) |
|
Defining the Goals and Expectations |
|
|
294 | (2) |
|
Mikolajczyk and Schmid Methodology |
|
|
295 | (1) |
|
|
295 | (1) |
|
|
295 | (1) |
|
Interest Points and Features |
|
|
295 | (1) |
|
Robustness Criteria for Ground Truth Data |
|
|
296 | (4) |
|
Illustrated Robustness Criteria |
|
|
296 | (3) |
|
Using Robustness Criteria for Real Applications |
|
|
299 | (1) |
|
Pairing Metrics with Ground Truth |
|
|
300 | (3) |
|
Pairing and Tuning Interest Points, Features, and Ground Truth |
|
|
301 | (1) |
|
Examples Using The General Vision Taxonomy |
|
|
301 | (2) |
|
Synthetic Feature Alphabets |
|
|
303 | (7) |
|
Goals for the Synthetic Dataset |
|
|
304 | (1) |
|
Accuracy of Feature Detection via Location Grid |
|
|
305 | (1) |
|
Rotational Invariance via Rotated Image Set |
|
|
305 | (1) |
|
Scale Invariance via Thickness and Bounding Box Size |
|
|
305 | (1) |
|
Noise and Blur Invariance |
|
|
305 | (1) |
|
|
306 | (1) |
|
Real Image Overlays of Synthetic Features |
|
|
306 | (1) |
|
Synthetic Interest Point Alphabet |
|
|
306 | (1) |
|
Synthetic Corner Alphabet |
|
|
307 | (2) |
|
Hybrid Synthetic Overlays on Real Images |
|
|
309 | (1) |
|
Method for Creating the Overlays |
|
|
310 | (1) |
|
|
310 | (3) |
|
Chapter 8 Vision Pipelines and Optimizations |
|
|
313 | (52) |
|
Stages, Operations, and Resources |
|
|
314 | (1) |
|
|
315 | (8) |
|
Compute Units, ALUs, and Accelerators |
|
|
317 | (1) |
|
|
318 | (1) |
|
|
319 | (3) |
|
|
322 | (1) |
|
The Vision Pipeline Examples |
|
|
323 | (27) |
|
|
323 | (2) |
|
Segmenting the Automobiles |
|
|
325 | (1) |
|
|
326 | (1) |
|
Measuring the Automobile Size and Shape |
|
|
326 | (1) |
|
|
327 | (1) |
|
Calibration, Set-up, and Ground Truth Data |
|
|
328 | (1) |
|
Pipeline Stages and Operations |
|
|
329 | (1) |
|
Operations and Compute Resources |
|
|
330 | (1) |
|
Criteria for Resource Assignments |
|
|
330 | (1) |
|
Face, Emotion, and Age Recognition |
|
|
331 | (2) |
|
Calibration and Ground Truth Data |
|
|
333 | (1) |
|
Interest Point Position Prediction |
|
|
334 | (1) |
|
Segmenting the Head and Face Using the Bounding Box |
|
|
335 | (1) |
|
Face Landmark Identification and Compute Features |
|
|
336 | (2) |
|
Pipeline Stages and Operations |
|
|
338 | (1) |
|
Operations and Compute Resources |
|
|
339 | (1) |
|
Criteria for Resource Assignments |
|
|
339 | (1) |
|
|
340 | (1) |
|
Segmenting Images and Feature Descriptors |
|
|
341 | (2) |
|
Pipeline Stages and Operations |
|
|
343 | (1) |
|
Mapping Operations to Resources |
|
|
343 | (1) |
|
Criteria for Resource Assignments |
|
|
344 | (1) |
|
|
345 | (1) |
|
Calibration and Ground Truth Data |
|
|
346 | (1) |
|
Feature and Object Description |
|
|
346 | (1) |
|
|
347 | (1) |
|
Pipeline Stages and Operations |
|
|
348 | (1) |
|
Mapping Operations to Resources |
|
|
348 | (1) |
|
Criteria for Resource Assignments |
|
|
349 | (1) |
|
Acceleration Alternatives |
|
|
350 | (8) |
|
|
351 | (1) |
|
Minimizing Memory Transfers Between Compute Units |
|
|
351 | (1) |
|
|
352 | (1) |
|
DMA, Data Copy, and Conversions |
|
|
352 | (1) |
|
Register Files, Memory Caching, and Pinning |
|
|
352 | (1) |
|
Data Structures, Packing, and Vector vs. Scatter-Gather Data Organization |
|
|
353 | (1) |
|
|
353 | (1) |
|
Compute-Centric vs. Data-Centric |
|
|
353 | (1) |
|
Threads and Multiple Cores |
|
|
354 | (1) |
|
Fine-Grain Data Parallelism |
|
|
354 | (1) |
|
SIMD, SIMT, and SPMD Fundamentals |
|
|
355 | (1) |
|
Shader Kernel Languages and GPGPU |
|
|
356 | (1) |
|
Advanced Instruction Sets and Accelerators |
|
|
357 | (1) |
|
Vision Algorithm Optimizations and Tuning |
|
|
358 | (4) |
|
Compiler And Manual Optimizations |
|
|
359 | (1) |
|
|
360 | (1) |
|
Feature Descriptor Retrofit, Detectors, Distance Functions |
|
|
360 | (1) |
|
Boxlets and Convolution Acceleration |
|
|
361 | (1) |
|
Data-Type Optimizations, Integer vs. Float |
|
|
361 | (1) |
|
|
362 | (1) |
|
|
363 | (2) |
|
Appendix A Synthetic Feature Analysis |
|
|
365 | (36) |
|
Background Goals and Expectations |
|
|
366 | (2) |
|
Test Methodology and Results |
|
|
368 | (2) |
|
Detector Parameters Are Not Tuned for the Synthetic Alphabets |
|
|
369 | (1) |
|
Expectations for Test Results |
|
|
370 | (1) |
|
Summary of Synthetic Alphabet Ground Truth Images |
|
|
370 | (2) |
|
Synthetic Interest Point Alphabet |
|
|
371 | (1) |
|
Synthetic Corner Point Alphabet |
|
|
371 | (1) |
|
Synthetic Alphabet Overlays |
|
|
371 | (1) |
|
Test 1 Synthetic Interest Point Alphabet Detection |
|
|
372 | (11) |
|
Annotated Synthetic Interest Point Detector Results |
|
|
374 | (1) |
|
Entire Images Available Online |
|
|
375 | (8) |
|
Test 2 Synthetic Corner Point Alphabet Detection |
|
|
383 | (10) |
|
Annotated Synthetic Corner Point Detector Results |
|
|
384 | (1) |
|
Entire Images Available Online |
|
|
384 | (9) |
|
Test 3 Synthetic Alphabets Overlaid on Real Images |
|
|
393 | (1) |
|
Annotated Detector Results on Overlay Images |
|
|
393 | (1) |
|
Test 4 Rotational Invariance for Each Alphabet |
|
|
394 | (4) |
|
Methodology for Determining Rotational Invariance |
|
|
394 | (4) |
|
Analysis of Results and Non-Repeatability Anomalies |
|
|
398 | (3) |
|
|
398 | (1) |
|
Non-Repeatability in Tests 1 and 2 |
|
|
399 | (1) |
|
Other Non-Repeatability in Test 3 |
|
|
400 | (1) |
|
|
400 | (1) |
|
|
400 | (1) |
|
Appendix B Survey of Ground Truth Datasets |
|
|
401 | (10) |
|
Appendix C Imaging and Computer Vision Resources |
|
|
411 | (8) |
|
|
411 | (1) |
|
|
412 | (3) |
|
Organizations, Institutions, and Standards |
|
|
415 | (2) |
|
Journals and Their Abbreviations |
|
|
417 | (1) |
|
Conferences and Their Abbreviations |
|
|
417 | (1) |
|
|
418 | (1) |
|
Appendix D Extended SDM Metrics |
|
|
419 | (18) |
Bibliography |
|
437 | (28) |
Index |
|
465 | |