Muutke küpsiste eelistusi

E-raamat: Computer Vision Systems: 13th International Conference, ICVS 2021, Virtual Event, September 22-24, 2021, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 13th International Conference on Computer Vision Systems, ICVS 2021, held in September 2021. Due to COVID-19 pandemic the conference was held virtually.
The 20 papers presented were carefully reviewed and selected from 29 submissions. cover a broad spectrum of issues falling under the wider scope of computer vision in real-world applications, including among others, vision systems for robotics, autonomous vehicles, agriculture and medicine. In this volume, the papers are organized into the sections: attention systems; classification and detection; semantic interpretation; video and motion analysis; computer vision systems in agriculture.
Attention Systems.- Thermal Image Super-Resolution Using Second-Order
Channel Attention with Varying Receptive Fields.- MARL: Multimodal
Attentional Representation Learning for Disease Prediction.- Object
Localization with Attribute Preference based on Top-Down Attention.- See the
silence: improving visual-only voice activity detection by optical flow and
RGB fusion.- Classification and Detection.- Score to Learn: a Comparative
Analysis of Scoring Functions for Active Learning in Robotics.- Enhancing the
performance of image classification through features automatically learned
from depth-maps.- Object Detection on TPU Accelerated Embedded Devices.-
Tackling Inter-Class Similarity and Intra-Class Variance for Microscopic
Image-based Classification.- Semantic Interpretation.-  Measuring the
Sim2Real gap in 3D Object classification for different 3D data
representation.- Spatially-Constrained Semantic Segmentation with Topological
aps and Visual mbeddings.- Knowledge-enabled generation of semantically
annotated image sequences of manipulation activities from VR demonstrations.-
Make It Easier: An Empirical Simplification of a Deep 3D Segmentation Network
for Human Body Parts.- Video and Motion Analysis.- Video Popularity
Prediction through Fusing Early Viewership with Video Content.- Action
Prediction during Human-Object Interaction based on DTW and Early Fusion of
Human and Object Representations.- GridTrack: Detection and Tracking of
Multiple Objects in Dynamic Occupancy Grids.- An Efficient Video Desnowing
and Deraining Method with a Novel Variant Dataset.- Computer Vision Systems
in Agriculture.- Robust Counting of Soft Fruit through Occlusions with
Re-identification.- Non-destructive Soft Fruit Mass and Volume Estimation for
Phenotyping in Horticulture.- Learning Image-based Contaminant Detection in
Wool Fleece from Noisy Annotations.- Active Learning for Crop-Weed
Discrimination by Image Classification from Convolutional Neural Networks
Feature Pyramid Levels.