Muutke küpsiste eelistusi

E-raamat: Computing, Communication and Learning: Third International Conference, CoCoLe 2024, Warangal, India, September 13-15, 2024, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 92,61 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the Third International Conference on Computing, Communication and Learning, CoCoLe 2024, held in Warangal, India, in September 2024.





The 24 full papers and 10 short papers presented here were carefully reviewed and selected from 149 submissions. These papers have been categorized under the following topical sections: Advancements in AI for Predictive Modeling, Quality Enhancement, and Real-Time Detection Across Various Domains; Machine Learning Advances in Medical Imaging, Agricultural Monitoring, and Multimedia Processing; Advancements in Privacy-Preservation and Intelligent Detection Systems for Federated Learning and Edge Computing.
.- Advancements in AI for Predictive Modeling, Quality Enhancement, and
Real-Time Detection Across Various Domains.



.- Crude Oil Price Forecasting using Hybridization of Optimized Deep Learning
and Shallow Machine Learning Models.



.- Adam Lyrebird Optimization-based DLSTM for Solar Irradiance Prediction
using Time Series Data.



.- Code Smell Detection using Deep Learning Models to Enhance the Software
Quality.



.- Unveiling the Future of Agriculture: Transformative Impact of Advanced
Deep Learning with Mobile App Technology for Plant Leaf Disease Detection.



.- Air Quality Prediction using Ensemble Learning.



.- Real-Time Highway Accident Detection and Response with Deep Learning and
Edge Caching.



.- Detection of Yoga Poses Using CNN and LSTM Models.



.- Enhancing Rhetorical Role Identification in Legal Documents using Large
Language Models and IN_place Data Augmentation.



.- Persona-Driven Dialog Generation: Enhancing User Engagement Through
Linguistic Proficiency and Personalization.



.- Design and Development of a Working Tool for Visual Speech and Speaker
Recognition for Marathi and Gujarati Languages.



.- Analysis of Tracking Algorithms for Multi-Person Tracking.



.- Personalized Human Activity Recognition Using Smartphone Technology.



.- Machine Learning Advances in Medical Imaging, Agricultural Monitoring, and
Multimedia Processing.



.- A Comprehensive Comparative Study of Breast Cancer Detection Using Machine
Learning Techniques to Improve Diagnosis.



.- Performance Improvement of Machine Learning Algorithms Through
Information-Theoretic Class Based Feature Multicorrelation Enabled Feature
Selection for Cervical Cancer Prediction.



.- Towards Robust Skin Cancer Diagnosis: Deep Fusion of VGG16 and MobileNet
Features.



.- Deep Transfer Model Based Accurate Brain Tumor Classification in Magnetic
Resonance Images.



.- Pneumonia Detection from X-ray Images using Deep Transfer Learning.



.- Crop Identification by using Machine Learning Classification Algorithm.



.- Biotic Stress Classification of Pear Leaves Diseases using Stacking
Ensemble Approaches.



.- Unveiling Emotions from Audio: A Multi-Model Exploration Leveraging
Diverse Datasets.



.- A Contrastive Meta-Learning Approach with Isotropic Sparse Decomposition
for Scalable Audio-Visual Learning.



.- Audio-Based Video Segmentation for Long Duration Videos using Triplet-Loss
Based Sentence Transformers and Acoustic Characteristics.



.- Video Content Moderation in Instagram.



.- An Effective Deep Learning Model for Air-Scripted Alphabet Recognition
System.



.- Advancements in Privacy-Preservation and Intelligent Detection Systems for
Federated Learning and Edge Computing.



.- Privacy-Preservation for Federated Learning: Survey and Future
Directions.



.- Decentralized Health: Federated Deep Learning for Cervical Cytology Image
Segmentation.



.- Malicious URL Detection using Artificial Intelligence Techniques.



.- Deep Forest-based Intrusion Detection System for Edge Intelligence
Assisted Smart Homes.



.- Statistical Modeling of Temperature Prediction Using Residual Network.



.-  Investigating Salient Object Detection Methods Tailored for Edge
Computing Infrastructure.



.- A Novel and Scalable Framework for Analyzing Building Energy Efficiency.



.- Assessment on Significant SVM and MLP-Based Optimized Resource Allocation
for Load Balancing.



.- An Improved and More Effective FSPC-Based Cloud Consumer Legality Process
for Protected Data.



.- A Review on QoS Aware Approaches in Edge-Fog Computing Environment.