Muutke küpsiste eelistusi

E-raamat: Concentration of Maxima and Fundamental Limits in High-Dimensional Testing and Inference

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a unified exposition of some fundamental theoretical problems in high-dimensional statistics. It specifically considers the canonical problems of detection and support estimation for sparse signals observed with noise. Novel phase-transition results are obtained for the signal support estimation problem under a variety of statistical risks. Based on a surprising connection to a concentration of maxima probabilistic phenomenon, the authors obtain a complete characterization of the exact support recovery problem for thresholding estimators under dependent errors. 


Zheng Gao graduated with a PhD in Statistics from the University of Michigan in 2020. His research focuses on large-scale multiple testing problems and real-time anomaly detection on high-dimensional data streams. Stilian Stoev is a Full Professor of Statistics at the University of Michigan, Ann Arbor. His research involves topics in applied probability, statistics and their applications to insurance and computer networks. Most recently, he has been working on extreme value theory.