Muutke küpsiste eelistusi

E-raamat: Concise Course on the Theory of Classical Liquids: Basics and Selected Topics

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Physics 923
  • Ilmumisaeg: 13-May-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319296685
  • Formaat - PDF+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Physics 923
  • Ilmumisaeg: 13-May-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319296685

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This short primer offers non-specialist readers a concise, yetcomprehensive introduction to the field of classical fluids - providing bothfundamental information and a number of selected topics to bridge the gapbetween the basics and ongoing research. In particular, hard-sphere systems represent a favorite playground instatistical mechanics, both in and out of equilibrium, as they represent thesimplest models of many-body systems of interacting particles, and at highertemperature and densities they have proven to be very useful as referencesystems for real fluids. Moreover, their usefulness in the realm of softcondensed matter has become increasingly recognized - for instance, theeffective interaction among (sterically stabilized) colloidal particles can betunedto almost perfectly match the hard-sphere model.These lecture notes present a brief, self-contained overview ofequilibrium statistical mechanics of classical fluids, with specialapplications to both the str

uctural and thermodynamic properties of systemsmade of particles interacting via the hard-sphere potential or closely relatedmodel potentials. In particular it addresses the exact statistical-mechanicalproperties of one-dimensional systems, the issue of thermodynamic(in)consistency among different routes in the context of several approximatetheories, and the construction of analytical or semi-analytical approximationsfor the structural properties.Written pedagogically at the graduate level, with many figures, tables,photographs, and guided end-of-chapter exercises, this introductory textbenefits students and newcomers to the field alike.

Foreword.- Preface.- Summary of Thermodynamic Potentials.- Summary of Equilibrium Statistical Ensembles.- Density Expansion of the Equation of State.- Spatial Correlation Functions and Thermodynamic Routes.- One-Dimensional Systems. Exact Solution for Nearest-Neighbor Interactions.- Density Expansion of the Radial Distribution Function. Approximate Integral Equations.- Exact Solution of the Percus-Yevick Approximation for Hard Spheres ... and Beyond.- Index.- References.
1 Summary of Thermodynamic Potentials
1(12)
1.1 Entropy: Isolated Systems
1(3)
1.2 Helmholtz Free Energy: Closed Systems
4(1)
1.3 Gibbs Free Energy: Isothermal---Isobaric Systems
5(1)
1.4 Grand Potential: Open Systems
6(1)
1.5 Response Functions and Maxwell Relations
6(7)
Exercises
11(1)
References
11(2)
2 Summary of Equilibrium Statistical Ensembles
13(20)
2.1 Phase Space
13(1)
2.2 Gibbs Entropy Functional
14(2)
2.3 Microcanonical Ensemble: Isolated Systems
16(2)
2.4 Canonical Ensemble: Closed Systems
18(2)
2.5 Grand Canonical Ensemble: Open Systems
20(3)
2.6 Isothermal-Isobaric Ensemble: Isothermal-Isobaric Systems
23(2)
2.7 Ideal Gas
25(2)
2.8 Interacting Systems
27(2)
2.9 Generalization to Mixtures
29(4)
Exercises
30(1)
References
31(2)
3 Density Expansion of the Equation of State
33(64)
3.1 Pair Interaction Potential and Mayer Function
33(6)
3.2 Virial Expansion
39(3)
3.3 Diagrammatic Method
42(4)
3.4 Grand Canonical Ensemble: Expansion in Powers of Fugacity
46(2)
3.5 Expansion of Pressure in Powers of Density: Virial Coefficients
48(2)
3.6 Virial Coefficients for Mixtures
50(4)
3.7 Second Virial Coefficient
54(4)
3.8 Higher-Order Virial Coefficients for Hard Spheres
58(14)
3.8.1 One-Component Systems
58(5)
3.8.2 Multicomponent Systems
63(9)
3.9 Simple Approximations for the Equation of State of Hard Disks and Spheres
72(25)
3.9.1 Hard Disks (d = 2)
73(2)
3.9.2 Hard Spheres (d = 3)
75(3)
3.9.3 Extension to Mixtures: Effective One-Component Fluid Approaches
78(11)
Exercises
89(3)
References
92(5)
4 Spatial Correlation Functions and Thermodynamic Routes
97(28)
4.1 Reduced Distribution Functions
97(3)
4.2 Correlation Functions
100(1)
4.3 Radial Distribution Function
101(3)
4.4 Ornstein-Zernike Relation and the Direct Correlation Function
104(2)
4.5 Thermodynamics from the Radial Distribution Function
106(9)
4.5.1 Compressibility Route
106(1)
4.5.2 Energy Route
107(1)
4.5.3 Virial Route
108(1)
4.5.4 Chemical-Potential Route
109(2)
4.5.5 A Master Route: The Free Energy
111(4)
4.6 Extension to Mixtures
115(7)
4.6.1 Thermodynamic Routes
118(2)
4.6.2 Hard Spheres
120(2)
4.7 The Thermodynamic Inconsistency Problem
122(3)
Exercises
123(1)
References
123(2)
5 One-Dimensional Systems: Exact Solution for Nearest-Neighbor Interactions
125(32)
5.1 Nearest-Neighbor and Pair Correlation Functions
125(3)
5.2 Nearest-Neighbor Distribution: Isothermal-Isobaric Ensemble
128(1)
5.3 Exact Radial Distribution Function and Thermodynamic Quantities
129(2)
5.4 Extension to Mixtures
131(4)
5.4.1 Binary Case
133(2)
5.5 Examples
135(22)
5.5.1 Square Well
135(5)
5.5.2 Square Shoulder
140(1)
5.5.3 Hard Rods and Sticky Hard Rods
141(5)
5.5.4 Mixtures of Nonadditive Hard Rods
146(7)
Exercises
153(2)
References
155(2)
6 Density Expansion of the Radial Distribution Function and Approximate Integral Equations
157(46)
6.1 Introduction
157(1)
6.2 External Force: Functional Analysis
158(1)
6.3 Root and Field Points
159(3)
6.4 Expansion of the Pair Correlation Function in Powers of Fugacity
162(2)
6.5 Expansion of the Radial Distribution Function in Powers of Density
164(4)
6.5.1 Some Examples
165(3)
6.6 Equation of State: Virial Coefficients
168(2)
6.7 Classification of Open Star Diagrams
170(5)
6.8 Approximate Closures
175(9)
6.8.1 Hypernetted-Chain and Percus-Yevick Approximate Integral Equations
176(5)
6.8.2 A Few Other Closures
181(1)
6.8.3 Linearized Debye-Huckel and Mean Spherical Approximations
182(2)
6.9 Some Thermodynamic Consistency Relations in Approximate Theories
184(19)
6.9.1 Are the Virial-Route HNC and the Compressibility-Route Percus-Yevick Values of the Fourth Virial Coefficient Related?
185(4)
6.9.2 Energy and Virial Routes in the Linearized Debye-Huckel and Mean Spherical Approximations
189(5)
6.9.3 "Energy" Route in Hard-Sphere Liquids
194(3)
Exercises
197(3)
References
200(3)
7 Exact Solution of the Percus-Yevick Approximation for Hard Spheres ... and Beyond
203(52)
7.1 Introduction
203(1)
7.2 An Alternative Approach: The Rational-Function Approximation
204(13)
7.2.1 Introduction of G(s)
205(1)
7.2.2 Definition of F(s)
206(1)
7.2.3 Exact Properties of F(s) for Small s and Large s
207(2)
7.2.4 Construction of the Approximation: Percus-Yevick Solution
209(8)
7.3 Percus-Yevick Approximation for Hard-Sphere and Sticky-Hard-Sphere Mixtures
217(20)
7.3.1 Sticky-Hard-Sphere Mixtures
217(5)
7.3.2 Additive Hard-Sphere Mixtures
222(3)
7.3.3 One-Component Sticky Hard Spheres
225(12)
7.4 Beyond the Percus-Yevick Approximation
237(18)
7.4.1 Hard Spheres
238(2)
7.4.2 Square-Well and Square-Shoulder Fluids
240(7)
Exercises
247(4)
References
251(4)
References 255(12)
Index 267