|
1 Introduction to Computational Science |
|
|
1 | (8) |
|
|
1 | (1) |
|
|
1 | (1) |
|
|
2 | (2) |
|
|
4 | (2) |
|
1.5 What Is Computational Science? |
|
|
6 | (2) |
|
|
8 | (1) |
|
|
8 | (1) |
|
2 Types of Visualization and Modeling |
|
|
9 | (12) |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
2.5 Agent-Based Chemical Kinetics |
|
|
11 | (4) |
|
2.6 Systems Dynamics Chemical Kinetics |
|
|
15 | (4) |
|
2.6.1 Simple First Order Reaction |
|
|
15 | (3) |
|
2.6.2 Reversible First Order Reactions |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
19 | (2) |
|
|
20 | (1) |
|
3 Data Types: Representation, Abstraction, Limitations |
|
|
21 | (18) |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
22 | (2) |
|
3.5 Limitations and Space Issues |
|
|
24 | (2) |
|
|
26 | (2) |
|
|
28 | (1) |
|
|
29 | (3) |
|
3.9 Collecting Groups of Similar Data |
|
|
32 | (3) |
|
3.10 Adding Structure to the Homogeneous: Trees |
|
|
35 | (1) |
|
3.11 Adding Structure to the Homogeneous Collections: Graphs |
|
|
36 | (1) |
|
3.12 Adding Structure to Homogeneous Collections: Stacks and Queues |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
38 | (1) |
|
4 Scientific Data Acquisition |
|
|
39 | (6) |
|
|
39 | (1) |
|
|
39 | (1) |
|
|
39 | (1) |
|
4.4 A First Problem --- Introduction |
|
|
40 | (1) |
|
4.5 Sensor Considerations |
|
|
41 | (1) |
|
|
42 | (1) |
|
4.7 A Second Problem --- Design |
|
|
43 | (1) |
|
4.8 A Third Problem --- Bonus |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
44 | (1) |
|
5 Procedures: Algorithms and Abstraction |
|
|
45 | (14) |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
46 | (1) |
|
5.5 Control Structure Example |
|
|
47 | (1) |
|
5.6 Procedural Abstraction |
|
|
48 | (1) |
|
5.7 Theater Lights Part 1 |
|
|
48 | (3) |
|
5.8 Theater Lights Part 2 |
|
|
51 | (1) |
|
5.9 Leaves on the River Part 1 |
|
|
52 | (3) |
|
5.10 Leaves on the River Part 2 |
|
|
55 | (2) |
|
|
57 | (2) |
|
|
57 | (2) |
|
|
59 | (6) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
60 | (2) |
|
|
62 | (1) |
|
|
63 | (2) |
|
|
63 | (2) |
|
|
65 | (18) |
|
|
65 | (1) |
|
|
65 | (1) |
|
|
65 | (1) |
|
7.4 An Example: Have a Hang-Up |
|
|
66 | (4) |
|
7.5 Another Design: Out on a Limb |
|
|
70 | (4) |
|
7.6 The Solution Is at Hand... with Solver |
|
|
74 | (4) |
|
7.7 But Wait, There's More! |
|
|
78 | (2) |
|
7.8 Integers Are Not Real...Numbers |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
81 | (2) |
|
|
81 | (2) |
|
8 Solving Sets of Equations |
|
|
83 | (14) |
|
|
83 | (1) |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
86 | (3) |
|
|
89 | (1) |
|
8.9 Setting Up Excel for Iterative Calculation |
|
|
90 | (2) |
|
|
92 | (2) |
|
8.11 The Modeling Process |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
95 | (2) |
|
|
95 | (2) |
|
9 Procedures: Performance and Complexity |
|
|
97 | (12) |
|
|
97 | (1) |
|
|
97 | (1) |
|
|
97 | (1) |
|
9.4 Simulation Model Performance |
|
|
98 | (1) |
|
9.5 Example of Computational Complexity: Tick Marks |
|
|
99 | (3) |
|
9.6 Another Example of Computational Complexity: Color a Square of Patches in NetLogo |
|
|
102 | (1) |
|
9.7 Example of Computational Complexity: Merge Sort |
|
|
103 | (2) |
|
9.8 Standard Big-Oh Function Classifications for Comparing Algorithms |
|
|
105 | (2) |
|
|
107 | (2) |
|
|
107 | (2) |
|
10 Self-Defining Data: Compression, XML and Databases |
|
|
109 | (10) |
|
|
109 | (1) |
|
|
109 | (1) |
|
|
109 | (1) |
|
10.4 Self-Defining Type 1: Compression |
|
|
110 | (2) |
|
10.5 Self-Defining Type 2: XML |
|
|
112 | (1) |
|
10.6 Self-Defining Type 3: Databases |
|
|
112 | (3) |
|
10.7 Self-Defining Type 3 Part 2: Data Warehouses |
|
|
115 | (2) |
|
10.8 Self-Defining Type 3 Part 3: Other Database Types |
|
|
117 | (1) |
|
|
118 | (1) |
|
|
118 | (1) |
|
|
119 | (10) |
|
|
119 | (1) |
|
|
119 | (1) |
|
|
120 | (1) |
|
11.4 Searching Amino Acids |
|
|
120 | (3) |
|
|
123 | (2) |
|
|
125 | (1) |
|
|
126 | (3) |
|
Ten Protein Sequences of 99 Amino Acids |
|
|
126 | (1) |
|
|
127 | (2) |
|
|
129 | (6) |
|
|
129 | (1) |
|
|
129 | (1) |
|
|
129 | (1) |
|
|
130 | (1) |
|
12.5 Fitting By Hand with Graphing Aid |
|
|
131 | (1) |
|
12.6 Fitting via Numerical Analysis (Regression) |
|
|
132 | (1) |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
134 | (1) |
|
|
135 | (16) |
|
|
135 | (1) |
|
|
135 | (1) |
|
|
135 | (1) |
|
13.4 What Makes Up an Optimization Problem? |
|
|
136 | (1) |
|
13.5 What Is the "Language" of an Optimization Problem? |
|
|
136 | (1) |
|
13.6 Working Through the Setup of an Optimization Problem |
|
|
137 | (2) |
|
13.7 Solving an Optimization Problem |
|
|
139 | (1) |
|
|
139 | (3) |
|
|
142 | (3) |
|
|
145 | (1) |
|
|
146 | (2) |
|
13.12 Computing Questions |
|
|
148 | (1) |
|
|
149 | (2) |
|
|
149 | (2) |
|
14 Data Organization and Analysis |
|
|
151 | (8) |
|
|
151 | (1) |
|
|
151 | (1) |
|
|
152 | (1) |
|
14.4 Spatial Data Representation |
|
|
152 | (1) |
|
|
152 | (4) |
|
|
156 | (1) |
|
|
156 | (1) |
|
|
157 | (2) |
|
|
157 | (2) |
Appendix: NetLogo Tutorial |
|
159 | (6) |
Appendix: LabQuest Tutorial |
|
165 | (8) |
Appendix: GIS Tutorial |
|
173 | (8) |
Definitions |
|
181 | (8) |
Index |
|
189 | |