Muutke küpsiste eelistusi

E-raamat: Concise Guide to Quantum Machine Learning

  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book offers a brief but effective introduction to quantum machine learning (QML). QML is not merely a translation of classical machine learning techniques into the language of quantum computing, but rather a new approach to data representation and processing. Accordingly, the content is not divided into a classical part that describes standard machine learning schemes and a quantum part that addresses their quantum counterparts. Instead, to immerse the reader in the quantum realm from the outset, the book starts from fundamental notions of quantum mechanics and quantum computing. Avoiding unnecessary details, it presents the concepts and mathematical tools that are essential for the required quantum formalism. In turn, it reviews those quantum algorithms most relevant to machine learning. Later chapters highlight the latest advances in this field and discuss the most promising directions for future research.





To gain the most from this book, a basic grasp of statistics and linear algebra is sufficient; no previous experience with quantum computing or machine learning is needed. The book is aimed at researchers and students with no background in quantum physics and is also suitable for physicists looking to enter the field of QML.

Arvustused

The book under review summarises lecture notes presented by the author for the quantum machine learning MSc course at the University of Trento; it is therefore structured in a student-friendly manner, offering support both on the mathematical side (also with the interpretation of quantum mechanics) and on the algorithmic side. ... The book concludes with an extensive, well-curated set of references, which represent an excellent continuation of quantum approaches. (Irina Ioana Mohorianu, zbMATH 1530.68003, 2024)

Chapter 1: Introduction.
Chapter 2: Basics of Quantum Mechanics.
Chapter 3: Basics of Quantum Computing.
Chapter 4: Relevant Quantum Algorithms.
Chapter 5: QML Toolkit.
Chapter 6: Quantum Clustering.
Chapter 7: Quantum Classification.
Chapter 8: Quantum Pattern Recognition.
Chapter 9: Quantum Neural Networks.
Chapter 10: Concluding Remarks.
Davide Pastorello is an assistant professor in the Department of Information Engineering and Computer Science at the University of Trento.