Muutke küpsiste eelistusi

E-raamat: Concrete Buildings in Seismic Regions, Second Edition

(Penelis Consulting Engineers SA, Greece), (Penelis Consulting Engineers SA, Greece)
  • Formaat: 831 pages
  • Ilmumisaeg: 04-Oct-2018
  • Kirjastus: CRC Press
  • ISBN-13: 9781351578769
  • Formaat - EPUB+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 831 pages
  • Ilmumisaeg: 04-Oct-2018
  • Kirjastus: CRC Press
  • ISBN-13: 9781351578769

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Reinforced concrete (R/C) is one of the main building materials used worldwide, and an understanding of its structural performance under gravity and seismic loads, albeit complex, is crucial for the design of cost effective and safe buildings.Concrete Buildings in Seismic Regions comprehensively covers of all the analysis and design issues related to the design of reinforced concrete buildings under seismic action. It is suitable as a reference to the structural engineer dealing with specific problems during the design process and also for undergraduate and graduate structural, concrete and earthquake engineering courses.This revised edition provides new and significantly developed coverage of seismic isolation and passive devices, and coverage of recent code modifications as well as notes on future developments of standards. It retains an overview of structural dynamics, the analysis and design of new R/C buildings in seismic regions, post-earthquake damage evaluation, pre-earthquake assessment of buildings and retrofitting procedures, and several numerical examples.The book outlines appropriate structural systems for many types of buildings, explores recent developments, and covers the last two decades of analysis, design, and earthquake engineering. It specifically addresses seismic demand issues and the basic issues of structural dynamics, considers the capacity of structural systems to withstand seismic effects in terms of strength and deformation, and highlights the assessment of existing R/C buildings under seismic action. All of the material has been developed to fit a modern seismic code and offers in-depth knowledge of the background upon which the code rules are based. It complies with European Codes of Practice for R/C buildings in seismic regions, and includes references to current American Standards for seismic design.
Preface to the second edition xxiii
Preface to the first edition xxv
List of abbreviations
xxvii
Authors xxix
1 Introduction
1(4)
1.1 Historical notes
1(3)
1.2 Structure of the book
4(1)
2 An overview of structural dynamics
5(74)
2.1 General
5(1)
2.2 Dynamic analysis of elastic single-degree-of-freedom systems
6(1)
2.2 A Equations of motion
6(15)
2.2.2 Free vibration
7(3)
2.2.3 Forced vibration
10(3)
2.2.4 Elastic response spectra
13(1)
2.2.4.1 Definition: generation
13(2)
2.2.4.2 Acceleration response spectra
15(4)
2.2.4.3 Displacement response spectra
19(1)
2.2.4.4 Velocity response spectra
20(1)
2.2.4.5 Acceleration-displacement response spectra
21(1)
2.3 Dynamic analysis of inelastic SDOF systems
21(15)
2.3.1 Introduction
21(1)
2.3.2 Viscous damping
22(2)
2.3.3 Hysteretic damping
24(1)
2.3.3.1 Case study
25(3)
2.3.4 Energy dissipation and ductility
28(5)
2.3.5 Physical meaning of the ability for energy absorption (damping)
33(2)
2.3.6 Inelastic response spectra
35(1)
2.3.6.1 Inelastic acceleration response spectra
35(1)
2.3.6.2 Inelastic displacement response spectra
36(1)
2.4 Dynamic analysis of MDOF elastic systems
36(30)
2.4.1 Introduction
36(1)
2.4.2 Equations of motion of plane systems
37(3)
2.4.3 Modal response spectrum analysis
40(4)
2.4.4 Pseudospatial structural single-storey system
44(1)
2.4.4.1 General
44(1)
2.4.4.2 Static response of the single-storey 3D system
45(7)
2.4.4.3 Dynamic response of a single-storey 3D system
52(4)
2.4.4.4 Concluding remarks on the response of single-storey system
56(4)
2.4.4.5 Static response of a pseudospatial multi-storey structural system
60(6)
2.5 Application example
66(13)
2.5.1 Building description
66(1)
2.5.2 Design specifications
67(1)
2.5.3 Modelling assumptions
68(1)
2.5.4 Static response
68(1)
2.5.5 Hand calculation for the centre of stiffness
69(1)
2.5.6 Mass calculation
69(1)
2.5.7 Base shear calculation
69(4)
2.5.8 Computer-aided calculation for the centre of stiffness
73(3)
2.5.9 Dynamic response
76(1)
2.5.10 Estimation of poles of rotation for building B
77(2)
3 Design principles, seismic actions, performance requirements, compliance criteria
79(46)
3.1 Introduction
79(1)
3.2 Conceptual framework of seismic design: energy balance
80(9)
3.2.1 General
80(4)
3.2.2 Displacement-based design
84(1)
3.2.2.1 Inelastic dynamic analysis and design
84(1)
3.2.2.2 Inelastic static analysis and design
85(1)
3.2.3 Force-based design
86(3)
3.2.4 Concluding remarks
89(1)
3.3 Earthquake input
89(11)
3.3.1 Definitions
89(5)
3.3.2 Seismicity and seismic hazard
94(1)
3.3.2.1 Seismicity
94(3)
3.3.2.2 Seismic hazard
97(3)
3.3.3 Concluding remarks
100(1)
3.4 Ground conditions and design seismic actions
100(16)
3.4.1 General
100(1)
3.4.2 Ground conditions
101(1)
3.4.2.1 Introduction
101(1)
3.4.2.2 Identification of ground types
102(1)
3.4.3 Seismic action in the form of response spectra
103(1)
3.4.3.1 Seismic zones
103(1)
3.4.3.2 Importance factor
103(2)
3.4.3.3 Basic representation of seismic action in the form of a response spectrum
105(3)
3.4.3.4 Horizontal elastic response spectrum
108(1)
3.4.3.5 Vertical elastic response spectrum
109(1)
3.4.3.6 Elastic displacement response spectrum
110(1)
3.4.3.7 Design spectrum for elastic analysis
111(2)
3.4.4 Alternative representation of the seismic action
113(1)
3.4.4.1 General
113(1)
3.4.4.2 Artificial accelerograms
113(1)
3.4.4.3 Recorded or simulated accelerograms
114(1)
3.4.5 Combination of seismic action with other actions
115(1)
3.5 Performance requirements and compliance criteria
116(9)
3.5.1 Introduction
116(2)
3.5.2 Performance requirements according to EC 8-1/2004
118(2)
3.5.3 Compliance criteria
120(1)
3.5.3.1 General
120(1)
3.5.3.2 Ultimate limit state
120(2)
3.5.3.3 Damage limitation state
122(1)
3.5.3.4 Specific measures
122(3)
4 Configuration of earthquake-resistant R7C structural systems: structural behavior
125(30)
4.1 General
125(1)
4.2 Basic principles of conceptual design
126(11)
4.2.1 Structural simplicity
126(1)
4.2.2 Structural regularity in plan and elevation
126(1)
4.2.3 Form of structural walls
127(2)
4.2.4 Structural redundancy
129(1)
4.2.5 Avoidance of short columns
129(1)
4.2.6 Avoidance of using flat slab frames as main structural systems
129(2)
4.2.7 Avoidance of a soft storey
131(1)
4.2.8 Diaphragmatic behaviour
131(3)
4.2.9 Bi-directional resistance and stiffness
134(1)
4.2.10 Strong columns-weak beams
134(1)
4.2.11 Provision of a second line of defense
135(1)
4.2.12 Adequate foundation system
135(2)
4.3 Primary and secondary seismic members
137(1)
4.4 Structural R/C types covered by seismic codes
137(3)
4.5 Structural configuration of multi-storey R/C buildings and their behaviour to earthquake
140(15)
4.5.1 General
140(1)
4.5.2 Historical overview of the development of R/C multi-storey buildings
141(3)
4.5.3 Structural systems and their response to earthquakes
144(1)
4.5.3.1 General
144(2)
4.5.3.2 Buildings with moment-resisting frames
146(1)
4.5.3.3 Buildings with wall systems
147(4)
4.5.3.4 Buildings with dual systems
151(2)
4.5.3.5 Buildings with flat slab frames, shear walls and moment-resisting frames
153(1)
4.5.3.6 Buildings with tube systems
153(2)
5 Analysis of the structural system
155(104)
5.1 General
155(1)
5.2 Structural regularity
155(5)
5.2.1 Introduction
155(1)
5.2.2 Criteria for regularity in plan
156(2)
5.2.3 Criteria for regularity in elevation
158(1)
5.2.4 Conclusions
159(1)
5.3 Torsional flexibility
160(3)
5.4 Ductility classes and behaviour factors
163(16)
5.4.1 General
163(1)
5.4.2 Ductility classes
164(1)
5.4.3 Behaviour factors for horizontal seismic actions
165(4)
5.4.4 Quantitative relations between the q-factor and ductility
169(1)
5.4.4.1 General
169(1)
5.4.4.2 M-φ relation for R/C members under plain bending
170(3)
5.4.4.3 Moment-curvature-displacement diagrams of R/C cantilever beams
173(2)
5.4.4.4 Moment-curvature-displacement diagrams of R/C frames
175(2)
5.4.4.5 Conclusions
177(1)
5.4.5 Critical regions
178(1)
5.5 Analysis methods
179(2)
5.5.1 Available methods of analysis for R/C buildings
179(2)
5.6 Elastic analysis methods
181(11)
5.6.1 General
181(1)
5.6.2 Modelling of buildings for elastic analysis and BIM concepts
181(1)
5.6.3 Specific modelling issues
182(1)
5.6.3.1 Walls and cores modelling
182(1)
5.6.3.2 T-and Γ-shaped beams
182(1)
5.6.3.3 Diaphragm constraint
183(1)
5.6.3.4 Eccentricity
184(1)
5.6.3.5 Stiffness
184(1)
5.6.4 Lateral force method of analysis
185(1)
5.6.4.1 Base shear forces
185(1)
5.6.4.2 Distribution along the height
185(2)
5.6.4.3 Estimation of the fundamental period
187(1)
5.6.4.4 Torsional effects
188(1)
5.6.5 Modal response spectrum analysis
189(1)
5.6.5.1 Modal participation
190(1)
5.6.5.2 Storey and wall shears
191(1)
5.6.5.3 Ritz vector analysis
191(1)
5.6.6 Time-history elastic analysis
191(1)
5.7 Inelastic analysis methods
192(26)
5.7.1 General
192(1)
5.7.2 Modelling in nonlinear analysis
192(1)
5.7.2.1 Slab modelling and transfer of loads
193(1)
5.7.2.2 Diaphragm constraint
193(1)
5.7.2.3 R/C walls and cores
193(2)
5.7.2.4 Foundation
195(1)
5.7.2.5 Point hinge versus fibre modelling
195(2)
5.7.2.6 Safety factors
197(3)
5.7.3 Pushover analysis
200(1)
5.7.4 Pros and cons of pushover analysis
201(2)
5.7.5 Equivalent SDOF systems
203(1)
5.7.5.1 Equivalent SDOF for torsionally restrained buildings
203(5)
5.7.5.2 Equivalent SDOF for torsionally unrestrained buildings
208(8)
5.7.6 Time-history nonlinear analysis
216(1)
5.7.6.1 Input motion scaling of accelerograms
216(2)
5.7.6.2 Incremental dynamic analysis
218(1)
5.8 Combination of the components of gravity loads and seismic action
218(13)
5.8.1 General
218(3)
5.8.2 Theoretical background
221(3)
5.8.3 Code provisions
224(1)
5.8.3.1 Suggested procedure for the analysis
224(1)
5.8.3.2 Implementation of the reference method adopted by EC8-1 in case of horizontal seismic actions
225(1)
5.8.3.3 Implementation of the alternative method adopted by EC8-1 in the case of horizontal seismic actions
226(4)
5.8.3.4 Implementation of the alternative method for horizontal and vertical seismic action
230(1)
5.9 Example: modelling and elastic analysis of an eight-storey RC building
231(17)
5.9.1 Building description
231(1)
5.9.2 Material properties
231(1)
5.9.3 Design specifications
231(1)
5.9.4 Definition of the design spectrum
231(1)
5.9.4.1 Elastic response spectrum (5% damping)
231(1)
5.9.4.2 Design response spectrum
231(2)
5.9.5 Estimation of mass and mass moment of inertia
233(1)
5.9.6 Structural regularity in plan and elevation
234(1)
5.9.6.1 Criteria for regularity in plan
234(2)
5.9.6.2 Criteria for regularity in elevation
236(1)
5.9.7 Determination of the behaviour factor q
237(1)
5.9.8 Description of the structural model
237(2)
5.9.9 Modal response spectrum analysis
239(1)
5.9.9.1 Accidental torsional effects
239(1)
5.9.9.2 Periods, effective masses and modes of vibration
240(2)
5.9.9.3 Shear forces per storey
242(1)
5.9.9.4 Displacements of the centres of masses
242(1)
5.9.9.5 Damage limitations
243(1)
5.9.9.6 Second-order effects
244(1)
5.9.9.7 Internal forces
244(4)
5.10 Examples: inelastic analysis of a 16 storey building
248(11)
5.10.1 Modelling approaches
248(4)
5.10.2 Nonlinear dynamic analysis
252(1)
5.10.3 Nonlinear static analysis
252(2)
5.10.4 Results: global response
254(3)
5.10.5 Results: local response
257(2)
6 Capacity design -- design action effects -- safety verifications
259(28)
6.1 Impact of capacity design on design action effects
259(17)
6.1.1 General
259(1)
6.1.2 Design criteria influencing the design action effects
260(1)
6.1.3 Capacity design procedure for beams
261(2)
6.1.4 Capacity design of columns
263(1)
6.1.4.1 General
263(1)
6.1.4.2 Bending
264(3)
6.1.4.3 Shear
267(2)
6.1.5 Capacity design procedure for slender ductile walls
269(1)
6.1.5.1 General
269(1)
6.1.5.2 Bending
269(2)
6.1.5.3 Shear
271(2)
6.1.6 Capacity design procedure for squat walls
273(1)
6.1.6.1 DCH buildings
273(1)
6.1.6.2 DCM buildings
273(1)
6.1.7 Capacity design of large lightly reinforced walls
273(1)
6.1.8 Capacity design of foundation
274(2)
6.2 Safety verifications
276(11)
6.2.1 General
276(1)
6.2.2 Ultimate limit state
277(1)
6.2.2.1 Resistance condition
277(1)
6.2.2.2 Second-order effects
278(2)
6.2.2.3 Global and local ductility condition
280(1)
6.2.2.4 Equilibrium condition
280(1)
6.2.2.5 Resistance of horizontal diaphragms
281(1)
6.2.2.6 Resistance of foundations
281(1)
6.2.2.7 Seismic joint condition
281(1)
6.2.3 Damage limitation
282(2)
6.2.4 Specific measures
284(1)
6.2.4.1 Design
285(1)
6.2.4.2 Foundations
285(1)
6.2.4.3 Quality system plan
285(1)
6.2.4.4 Resistance uncertainties
285(1)
6.2.4.5 Ductility uncertainties
286(1)
6.2.5 Concluding remarks
286(1)
7 Reinforced concrete materials under seismic actions
287(34)
7.2 Introduction
287(2)
7.2 Plain (unconfined) concrete
289(6)
7.2.1 General
289(1)
7.2.2 Monotonic compressive stress-strain diagrams
289(1)
7.2.3 Cyclic compressive stress-strain diagram
290(2)
7.2.4 Provisions of Eurocodes for plain (not confined) concrete
292(3)
7.3 Steel
295(7)
7.3.1 General
295(1)
7.3.2 Monotonic stress-strain diagrams
295(2)
7.3.3 Stress-strain diagram for repeated tensile loading
297(1)
7.3.4 Stress-strain diagram for reversed cyclic loading
298(1)
7.3.5 Provisions of codes for reinforcement steel
299(1)
7.3.6 Concluding remarks
300(2)
7.4 Confined concrete
302(8)
7.4.1 General
302(1)
7.4.2 Factors influencing confinement
303(1)
7.4.3 Provisions of Eurocodes for confined concrete
304(1)
7.4.3.1 Form of the diagram σc-εc
304(2)
7.4.3.2 Influence of confinement
306(4)
7.5 Bonding between steel and concrete
310(9)
7.5.1 General
310(3)
7.5.2 Bond-slip diagram under monotonic loading
313(2)
7.5.3 Bond-slip diagram under cyclic loading
315(2)
7.5.4 Provisions of Eurocodes for bond of steel to concrete
317(1)
7.5.4.1 Static loading
317(2)
7.5.4.2 Seismic loading
319(1)
7.6 Basic conclusions for materials and their synergy
319(2)
8 Seismic-resistant R/C frames
321(130)
8.1 General
321(4)
8.2 Design of beams
325(41)
8.2.1 General
325(1)
8.2.2 Beams under bending
326(1)
8.2.2.1 Main assumptions
326(1)
8.2.2.2 Characteristic levels of loading to failure (limit states)
326(4)
8.2.2.3 Determination of the characteristic points of M-φ diagram and ductility in terms of curvature for orthogonal cross section
330(7)
8.22.4 Determination of the characteristic points of M-φ diagram and ductility in terms of curvature for a generalised cross section
337(4)
8.2.3 Load-deformation diagrams for bending under cyclic loading
341(1)
8.2.3.1 General
341(1)
8.2.3.2 Flexural behaviour of beams under cyclic loading
342(2)
8.2.4 Strength and deformation of beams under prevailing shear
344(1)
8.2.4.1 Static loading
344(8)
8.2.4.2 Cyclic loading
352(2)
8.2.4.3 Concluding remarks on shear resistance
354(1)
8.2.5 Code provisions for beams under prevailing seismic action
355(1)
8.2.5.1 General
355(1)
8.2.5.2 Design of beams for DCM buildings
355(5)
8.2.5.3 Design of beams for DCH buildings
360(2)
8.2.5.4 Anchorage of beam reinforcement in joints
362(3)
8.2.5.5 Splicing of bars
365(1)
8.3 Design of columns
366(36)
8.3.1 General
366(1)
8.3.2 Columns under bending with axial force
367(1)
8.3.2.1 General
367(2)
8.3.2.2 Determination of characteristic points of M-φ diagram and ductility in terms of curvature under axial load for an orthogonal cross section
369(7)
8.3.2.3 Behaviour of columns under cyclic loading
376(2)
8.3.3 Strength and deformation of columns under prevailing shear
378(1)
8.3.3.1 General
378(1)
8.3.3.2 Shear design of rectangular R/C columns
379(4)
8.3.4 Code provisions for columns under seismic action
383(1)
8.3.4.1 General
383(1)
8.3.4.2 Design of columns for DCM buildings
384(5)
8.3.4.3 Design of columns for DCH buildings
389(2)
8.3.4.4 Anchorage of column reinforcement
391(1)
8.3.4.5 Splicing of bars
391(1)
8.3.5 Columns under axial load and biaxial bending
392(1)
8.3.5.1 General
392(1)
8.3.5.2 Biaxial strength in bending and shear
393(3)
8.3.5.3 Chord rotation at yield and failure stage: skew ductility μφ in terms of curvature
396(1)
8.3.5.4 Stability of M-θ diagrams under cyclic loading: form of the hysteresis loops
397(1)
8.3.5.5 Conclusions
397(1)
8.3.6 Short columns under seismic action
397(1)
8.3.6.1 General
397(4)
8.3.6.2 Shear strength of short columns with inclined bars
401(1)
8.3.6.3 Code provisions for short columns
402(1)
8.4 Beam-column joints
402(12)
8.4.1 General
402(1)
8.4.2 Design of joints under seismic action
403(1)
8.4.2.1 Demand for the shear design of joints
404(2)
8.4.2.2 Joint shear strength according to the Paulay and Priestley method
406(3)
8.4.2.3 Background for the determination of joint shear resistance according to ACI 318-2011 and EC8-1/2004
409(2)
8.4.3 Code provisions for the design of joints under seismic action
411(1)
8.4.3.1 DCM R/C buildings under seismic loading according to EC 8-112004
412(1)
8.4.3.2 DCH R/C buildings under seismic loading according to EC 8-1/2004
412(2)
8.4.4 Non-conventional reinforcing in the joint core
414(1)
8.5 Masonry-infilled frames
414(9)
8.5.1 General
414(3)
8.5.2 Code provisions for masonry-infilled frames under seismic action
417(1)
8.5.2.1 Requirements and criteria
417(2)
8.5.2.2 Irregularities due to masonry infills
419(1)
8.5.2.3 Linear modelling of masonry infills
420(1)
8.5.2.4 Design and detailing of masonry-infilled frames
421(1)
8.5.3 General remarks on masonry-infilled frames
422(1)
8.6 Example; detailed design of an internal frame
423(28)
8.6.1 Beams: ultimate limit state in bending
424(1)
8.6.1.1 External supports on C2 and C28 (beam B8 -- left, B68-right)
424(2)
8.6.1.2 Internal supports on C8 and on C22 (beam B8 - right, B19 - left, B57 - right, B68 - left)
426(1)
8.6.1.3 Internal supports on C14 and C18 (beam B19 - right, B37 - left, B37 - right, B57 - left)
427(1)
8.6.1.4 Mid-span (beams B8, B68)
427(1)
8.6.1.5 Mid-span (beams B19, B37, B57)
427(1)
8.6.2 Columns: ultimate limit state in bending and shear
428(1)
8.6.2.1 Column C2 (exterior column)
428(5)
8.6.2.2 Design of exterior beam-column joint
433(2)
8.6.2.3 Column C8 (interior column)
435(6)
8.6.2.4 Design of interior beam-column joint
441(3)
8.6.3 Beams: ultimate limit state in shear
444(1)
8.6.3.1 Design shear forces
444(4)
8.6.3.2 Shear reinforcement
448(3)
9 Seismic-resistant R/C walls and diaphragms
451(70)
9.1 General
451(1)
9.2 Slender ductile walls
452(23)
9.2.1 A summary on structural behaviour of slender ductile walls
452(3)
9.2.2 Behaviour of slender ductile walls under bending with axial load
455(1)
9.2.2.1 General
455(1)
9.2.2.2 Dimensioning of slender ductile walls with orthogonal cross section under bending with axial force
456(2)
9.2.2.3 Dimensioning of slender ductile walls with a composite cross section under bending with axial force
458(1)
9.2.2.4 Determination of M-φ diagram and ductility in terms of curvature under axial load for orthogonal cross sections
459(1)
9.2.3 Behaviour of slender ductile walls under prevailing shear
460(1)
9.2.4 Code provisions for slender ductile walls
461(1)
9.2.4.1 General
461(1)
9.2.4.2 Design of slender ductile walls for DCM buildings
462(7)
9.2.4.3 Design of slender ductile walls for DCH buildings
469(6)
9.3 Ductile coupled walls
475(4)
9.3.1 General
475(1)
9.3.2 Inelastic behaviour of coupled walls
476(2)
9.3.3 Code provisions for coupled slender ductile walls
478(1)
9.4 Squat ductile walls
479(5)
9.4.1 General
479(1)
9.4.2 Flexural response and reinforcement distribution
480(1)
9.4.3 Shear resistance
481(1)
9.4.4 Code provisions for squat ductile walls
481(3)
9.5 Large lightly reinforced walls
484(3)
9.5.1 General
484(1)
9.5.2 Design to bending with axial force
485(1)
9.5.3 Design to shear
485(1)
9.5.4 Detailing for local ductility
486(1)
9.6 Special issues in the design of walls
487(21)
9.6.1 Analysis and design using FEM procedure
487(2)
9.6.2 Warping of open composite wall sections
489(1)
9.6.2.1 General
489(2)
9.6.2.2 Saint-Venant uniform torsion
491(2)
9.6.2.3 Concept of warping behaviour
493(8)
9.6.2.4 Geometrical parameters for warping bending
501(4)
9.6.2.5 Implications of warping torsion in analysis and design to seismic action of R/C buildings
505(3)
9.7 Seismic design of diaphragms
508(3)
9.7.1 General
508(1)
9.7.2 Analysis of diaphragms
509(1)
9.7.2.1 Rigid diaphragms
509(1)
9.7.2.2 Flexible diaphragms
510(1)
9.7.3 Design of diaphragms
511(1)
9.7.4 Code provisions for seismic design of diaphragms
511(1)
9.8 Example: dimensioning of a slender ductile wall with a composite cross section
511(10)
9.8.1 Ultimate limit state in bending and shear
511(4)
9.8.2 Estimation of axial stresses due to warping torsion
515(1)
9.8.2.1 Estimation of the geometrical parameters for warping bending of an open composite C-shaped wall section
515(2)
9.8.2.2 Implementation of the proposed methodology for deriving the normal stresses due to warping
517(4)
10 Seismic design of foundations
521(40)
10.1 General
521(1)
10.2 Ground properties
522(5)
10.2.1 Strength properties
522(1)
10.2.1.1 Clays
522(1)
10.2.1.2 Granular soils (sands and gravels)
523(1)
10.2.1.3 Partial safety factors for soil
523(1)
10.2.2 Stiffness and damping properties
523(2)
10.2.3 Soil liquefaction
525(1)
10.2.4 Excessive settlements of sands under cyclic loading
526(1)
10.2.5 Conclusions
526(1)
10.3 General considerations for foundation analysis and design
527(4)
10.3.1 General requirements and design rules
527(1)
10.3.2 Design action effects on foundations in relation to ductility and capacity design
527(1)
10.3.2.1 General
527(1)
10.3.2.2 Design action effects for various types of R/C foundation members
528(3)
10.4 Analysis and design of foundation ground under the design action effects
531(13)
10.4.1 General requirements
531(1)
10.4.2 Transfer of action effects to the ground
532(1)
10.4.2.1 Horizontal forces
532(1)
10.4.2.2 Normal force and bending moment
533(1)
10.4.3 Verification and dimensioning of foundation ground at ULS of shallow or embedded foundations
533(1)
10.4.3.1 Footings
533(1)
10.4.3.2 Design effects on foundation horizontal connections between vertical structural elements
534(1)
10.4.3.3 Raft foundations
535(1)
10.4.3.4 Box-type foundations
536(1)
10.4.4 Settlements of foundation ground of shallow or embedded foundations at SLS
536(1)
10.4.4.1 General
536(1)
10.4.4.2 Footings
536(1)
10.4.4.3 Foundation beams and rafts
537(2)
10.4.5 Bearing capacity and deformations of foundation ground in the case of a pile foundation
539(1)
10.4.5.1 General
539(1)
10.4.5.2 Vertical load resistance and stiffness
540(2)
10.4.5.3 Transverse load resistance and stiffness
542(2)
10.5 Analysis and design of foundation members under the design action effects
544(8)
10.5.1 Analysis
544(1)
10.5.1.1 Separated analysis of superstructure and foundation
544(2)
10.5.1.2 Integrated analysis of superstructure and foundation (soil-structure interaction)
546(1)
10.5.1.3 Integrated analysis of superstructure foundation and foundation soil
547(1)
10.5.2 Design of foundation members
547(1)
10.5.2.1 Dissipative superstructure-non-dissipative foundation elements and foundation ground
547(4)
10.5.2.2 Dissipative superstructure-dissipative foundation elements-elastic foundation ground
551(1)
10.5.2.3 Non-dissipative superstructure-non-dissipative foundation elements and foundation ground
552(1)
10.5.2.4 Concluding remarks
552(1)
10.6 Example: dimensioning of foundation beams
552(9)
10.6.1 Ultimate limit state in bending
555(1)
10.6.2 Ultimate limit state in shear
556(5)
11 Seismic pathology
561(32)
11.1 Classification of damage to R/C structural members
561(18)
11.1.1 Introduction
561(1)
11.1.2 Damage to columns
562(5)
11.1.3 Damage to R/C walls
567(3)
11.1.4 Damage to beams
570(2)
11.1.5 Damage to beam-column joints
572(1)
11.1.6 Damage to slabs
573(2)
11.1.7 Damage to infill walls
575(1)
11.1.8 Spatial distribution of damage in buildings
576(2)
11.1.9 Stiffness degradation
578(1)
11.2 Factors affecting the degree of damage to buildings
579(14)
11.2.1 Introduction
579(1)
11.2.2 Deviations between design and actual response spectrum
580(1)
11.2.3 Brittle columns
580(2)
11.2.4 Asymmetric arrangement of stiffness elements in plan
582(1)
11.2.5 Flexible ground floor
583(2)
11.2.6 Short columns
585(1)
11.2.7 Shape of the floor plan
585(1)
11.2.8 Shape of the building in elevation
585(1)
11.2.9 Slabs supported by columns without beams (flat slab systems)
585(1)
11.2.10 Damage from previous earthquakes
586(1)
11.2.11 R/C buildings with a frame structural system
587(1)
11.2.12 Number of storeys
587(1)
11.2.13 Type of foundations
588(1)
11.2.14 Location of adjacent buildings in the block
589(2)
11.2.15 Slab levels of adjacent structures
591(1)
11.2.16 Poor structural layout
591(1)
11.2.17 Main types of damage in buildings designed on the basis of modern codes
592(1)
12 Emergency post-earthquake damage inspection, assessment and human life protection measures
593(16)
12.1 General
593(1)
12.2 Inspections and damage assessment
594(3)
12.2.1 Introductory remarks
594(1)
12.2.2 Purpose of the inspections
594(1)
12.2.3 Damage assessment
595(1)
12.2.3.1 Introduction
595(1)
12.2.3.2 General principles of damage assessment
596(1)
12.3 Organisational scheme for inspections
597(2)
12.3.1 Introduction
597(1)
12.3.2 Usability classification-inspection forms
597(1)
12.3.3 Inspection levels
598(1)
12.4 Emergency measures for temporary propping
599(7)
12.4.1 General
599(2)
12.4.2 Techniques for propping vertical loads
601(1)
12.4.2.1 Industrial-type metal scaffolds
601(1)
12.4.2.2 Timber
601(1)
12.4.2.3 Steel profiles
601(1)
12.4.3 Techniques for resisting lateral forces
602(1)
12.4.3.1 Bracing with buttresses
602(2)
12.4.3.2 Bracing with diagonal X-braces
604(1)
12.4.3.3 Bracing with interior anchoring
605(1)
12.4.3.4 Bracing with tension rods or rings
605(1)
12.4.4 Wedging techniques
605(1)
12.4.5 Case studies
606(1)
12.5 Final remarks
606(3)
13 Seismic assessment and retrofitting of R/C buildings
609(52)
13.1 General
609(1)
13.2 Pre-earthquake seismic evaluation of R/C buildings (tiers)
610(2)
13.3 Post-earthquake seismic evaluation of R/C buildings
612(2)
13.3.1 Introduction
612(1)
13.3.2 Objectives and principles of post-earthquake retrofitting
613(1)
13.4 Quantitative detailed seismic evaluation and retrofitting design
614(1)
13.5 Overview of displacement-based design for seismic actions
615(15)
13.5.1 Introduction
615(1)
13.5.2 Displacement-based design methods
615(1)
13.5.2.1 N2 method (EC8-1/2004)
616(6)
13.5.2.2 Capacity-spectrum method ATC 40-1996
622(3)
13.5.2.3 Coefficient method/ASCE/SEI 41-06 (FEMA 356/2000)
625(2)
13.5.2.4 Direct displacement-based design (DDBD)
627(2)
13.5.2.5 Concluding remarks
629(1)
13.6 Scope of the detailed seismic assessment and rehabilitation of R/C buildings
630(1)
13.7 Performance requirements and compliance criteria
630(4)
13.7.1 Performance requirements
630(2)
13.7.2 Compliance criteria
632(1)
13.7.2.1 Seismic actions
632(1)
13.7.2.2 Safety verification of structural members
632(1)
13.7.2.3 `Primary' and `secondary' seismic elements
633(1)
13.7.2.4 Limit state of near collapse (NC)
633(1)
13.7.2.5 Limit state of significant damage (SD)
633(1)
13.7.2.6 Limit state of damage limitation (DL)
633(1)
13.8 Information for structural assessment
634(5)
13.8.1 General
634(1)
13.8.2 Required input data
634(1)
13.8.2.1 Geometry of the structural system
634(1)
13.8.2.2 Detailing
635(1)
13.8.2.3 Materials
635(2)
13.8.2.4 Other input data not related to the structural system
637(1)
13.8.3 Knowledge levels and CFs
638(1)
13.9 Quantitative assessment of seismic capacity
639(10)
13.9.1 General
639(1)
13.9.2 Seismic actions
639(1)
13.9.3 Structural modelling
639(1)
13.9.4 Methods of analysis
640(1)
13.9.4.1 General
640(1)
13.9.4.2 Lateral force elastic analysis
640(2)
13.9.4.3 Multimodal response spectrum analysis
642(1)
13.9.4.4 Non-linear static analysis
642(1)
13.9.4.5 Non-linear time-history analysis
643(1)
13.9.4.6 The q-factor approach
644(1)
13.9.4.7 Additional issues common to all methods of analysis
644(1)
13.9.5 Safety verifications
645(1)
13.9.5.1 General
645(1)
13.9.5.2 Linear methods of analysis
646(1)
13.9.5.3 Non-linear methods of analysis (static or dynamic)
647(1)
13.9.5.4 The q-factor approach
647(1)
13.9.5.5 Acceptance criteria
647(2)
13.10 Decisions for structural retrofitting of R/C buildings
649(5)
13.10.1 General
649(2)
13.10.2 Criteria governing structural interventions
651(1)
13.10.2.1 General criteria
652(1)
13.10.2.2 Technical criteria
652(1)
13.10.2.3 Types of intervention
652(1)
13.10.2.4 Examples of repair and strengthening techniques
653(1)
13.11 Design of structural rehabilitation
654(5)
13.11.1 General
654(1)
13.11.2 Conceptual design
655(1)
13.11.3 Analysis
655(1)
13.11.4 Safety verifications
655(1)
13.11.4.1 Verifications for non-linear static analysis method
655(2)
13.11.4.2 Verifications for the q-factor approach
657(1)
13.11.5 Drawings
658(1)
13.12 Final remarks
659(2)
14 Technology of repair and strengthening
661(68)
14.1 General
661(1)
14.2 Materials and intervention techniques
662(12)
14.2.1 Conventional cast-in-place concrete
662(1)
14.2.2 High-strength concrete using shrinkage compensating admixtures
663(1)
14.2.3 Shotcrete (gunite)
663(1)
14.2.3.1 Dry process
664(1)
14.2.3.2 Wet process
665(1)
14.2.3.3 Final remarks
665(1)
14.2.4 Polymer concrete
666(1)
14.2.5 Resins
667(1)
14.2.6 Resin concretes
668(1)
14.2.7 Grouts
668(1)
14.2.8 Epoxy resin-bonded metal sheets on concrete
669(1)
14.2.9 Welding of new reinforcement
669(1)
14.2.10 FRP laminates and sheets bonded on concrete with epoxy resin
670(1)
14.2.10.1 General
670(1)
14.2.10.2 Technical properties of FRPs
671(1)
14.2.10.3 Types of FRP composites
672(2)
14.3 Redimensioning and safety verification of structural elements
674(6)
14.3.1 General
674(1)
14.3.2 Revised γm-factors
675(1)
14.3.3 Load transfer mechanisms through interfaces
675(1)
14.3.3.1 Compression against pre-cracked interfaces
675(1)
14.3.3.2 Adhesion between non-metallic materials
676(1)
14.3.3.3 Friction between non-metallic materials
676(1)
14.3.3.4 Load transfer through resin layers
677(1)
14.3.3.5 Clamping effect of steel across interfaces
677(1)
14.3.3.6 Dowel action
678(1)
14.3.3.7 Anchoring of new reinforcement
678(1)
14.3.3.8 Welding of steel elements
679(1)
14.3.3.9 Final remarks
679(1)
14.3.4 Simplified estimation of the resistance of structural elements
679(1)
14.4 Repair and strengthening of structural elements using conventional means
680(27)
14.4.1 General
680(1)
14.4.2 Columns
681(1)
14.4.2.1 Local interventions
681(1)
14.4.2.2 R/C jackets
681(3)
14.4.2.3 Steel profile cages
684(1)
14.4.2.4 Steel or FRP encasement
685(1)
14.4.2.5 Redimensioning and safety verifications
686(2)
14.4.2.6 Code (EC 8-3/2005) provisions
688(1)
14.4.3 Beams
688(1)
14.4.3.1 Local interventions
688(1)
14.4.3.2 R/C jackets
689(1)
14.4.3.3 Bonded metal sheets
690(1)
14.4.3.4 Redimensioning and safety verification
690(5)
14.4.4 Beam-column joints
695(1)
14.4.4.1 Local repairs
695(1)
14.4.4.2 X-shaped prestressed collars
696(1)
14.4.4.3 R/C jackets
696(1)
14.4.4.4 Bonded metal plates
697(1)
14.4.4.5 Redimensioning and safety verification
698(1)
14.4.5 R/C walls
698(1)
14.4.5.1 Local repairs
698(1)
14.4.5.2 R/C jackets
698(2)
14.4.5.3 Redimensioning and safety verification
700(1)
14.4.6 R/C slabs
701(1)
14.4.6.1 Local repair
701(1)
14.4.6.2 Increase in the thickness or the reinforcement of a slab
701(1)
14.4.6.3 Redimensioning and safety verifications
702(1)
14.4.7 Foundations
703(1)
14.4.7.1 Connection of column jacket to footing
703(1)
14.4.7.2 Strengthening of footings
704(1)
14.4.8 Infill masonry walls
705(1)
14.4.8.1 Light damage
705(1)
14.4.8.2 Serious damage
705(2)
14.5 Repair and strengthening of structural elements using FRPs
707(17)
14.5.1 General considerations
707(1)
14.5.2 Bending
707(1)
14.5.2.1 Intermediate flexural crack-induced debonding
708(3)
14.5.2.2 Crushing of concrete under compression before tension zone failure
711(1)
14.5.2.3 Plate-end debonding
712(1)
14.5.2.4 Theoretical justification of debonding length lb and strain εfe
713(3)
14.5.3 Shear
716(2)
14.5.4 Axial compression and ductility enhancement
718(1)
14.5.4.1 Axial compression
718(3)
14.5.4.2 Ductility enhancement
721(1)
14.5.4.3 Clamping of lap splices
722(1)
14.5.5 Strengthening of R/C beam-column joints using FRP sheets and laminates
722(2)
14.6 Addition of new structural elements
724(1)
14.7 Quality assurance of interventions
725(1)
14.7.1 General
725(1)
14.7.2 Quality plan of design
726(1)
14.7.3 Quality plan of construction
726(1)
14.8 Final remarks
726(3)
15 Seismic isolation and energy dissipation systems
729(28)
15.1 Fundamental concepts
729(3)
15.1.1 Seismic isolation
729(1)
15.1.2 Buildings with supplemental damping devices
730(2)
15.2 Concept design of seismically isolated buildings
732(12)
15.2.1 Main requirements of concept design
732(1)
15.2.1.1 Seismic isolation horizontal level
733(2)
15.2.1.2 In-plan distribution of isolator devices
735(1)
15.2.1.3 Theoretical background
735(2)
15.2.1.4 Target fundamental period, damping and expected displacements
737(1)
15.2.2 Isolation devices
737(1)
15.2.2.1 Inverted pendulum bearings
738(4)
15.2.2.2 Rubber bearings
742(2)
15.3 Concept design of buildings with supplemental damping
744(9)
15.3.1 Concept design
744(2)
15.3.2 Displacement-depended dampers
746(2)
15.3.3 Velocity-dependent dampers
748(1)
15.3.3.1 Solid viscoelastic devices
748(2)
15.3.3.2 Fluid viscoelastic devices
750(3)
15.4 Final design of buildings with seismic isolation and/or supplemental damping
753(4)
15.4.1 Analysis methods
753(1)
15.4.2 Modal linear analysis for buildings with seismic isolation
754(1)
15.4.3 Modal linear analysis for buildings with supplemental damping
755(1)
15.4.4 Time-history linear analysis
755(1)
15.4.5 Time-history nonlinear analysis for seismically isolated buildings
755(1)
15.4.6 Time-history nonlinear analysis for buildings with supplemental damping
756(1)
References 757(18)
Index 775
George G. Penelis is Emeritus Professor at the Aristotle University of Thessaloniki, Greece, has served as national representative on the drafting committee for Eurocode 2, is ordinary member of Academia Pontaniana, Italy, and has published more than 250 technical papers, and is co-author of Earthquake Resistant Concrete Structures.

Gregory G. Penelis is the CEO of Penelis Consulting Engineers S.A., and has been involved in the design/review of more than 100 buildings throughout Europe. He has been involved in many research projects regarding the seismic assessment of listed and monumental buildings.