Muutke küpsiste eelistusi

E-raamat: Concrete Segmental Bridges: Theory, Design, and Construction to AASHTO LRFD Specifications

, (Fremont, California, USA)
  • Formaat: 1028 pages
  • Ilmumisaeg: 11-Jan-2020
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9780429938832
  • Formaat - EPUB+DRM
  • Hind: 58,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 1028 pages
  • Ilmumisaeg: 11-Jan-2020
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9780429938832

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Segmental concrete bridges have become one of the main options for major transportation projects world-wide. They offer expedited construction with minimal traffic disruption, lower life cycle costs, appealing aesthetics and adaptability to a curved roadway alignment. The literature is focused on construction, so this fills the need for a design-oriented book for less experienced bridge engineers and for senior university students.

It presents comprehensive theory, design and key construction methods, with a simple design example based on the AASHTO LRFD Design Specifications for each of the main bridge types. It outlines design techniques and relationships between analytical methods, specifications, theory, design, construction and practice. It combines mathematics and engineering mechanics with the authors’ design and teaching experience.

Arvustused

'Authors Dongzhour Huang and Bo Hu should be commended for their detailed tome. . . . The textbook is sure to become a useful reference for both students and practicing engineers due to its substantial breadth of information, from basic engineering principles to detailed bridge design examples.'

C. J. Freeman, Florida Dept. of Transportation, USA, Journal of Bridge Engineering

Preface xxvii
Acknowledgments xxix
Authors xxxi
Unit Conversion Factors xxxiii
Principal Notations xxxv
Chapter 1 Introduction to Concrete Segmental Bridges 1 (60)
1.1 Brief History and Development of Concrete Segmental Bridges
1 (8)
1.2 Materials
9 (18)
1.2.1 Introduction
9 (1)
1.2.2 Concrete
9 (10)
1.2.2.1 Introduction
9 (1)
1.2.2.2 Compression Strength
9 (2)
1.2.2.3 Tensile Strength
11 (1)
1.2.2.4 Stress-Strain Curve of Concrete and Modulus of Elasticity
11 (2)
1.2.2.5 Creep
13 (3)
1.2.2.6 Shrinkage
16 (2)
1.2.2.7 Thermal Coefficient of Expansion
18 (1)
1.2.2.8 Lightweight Concrete
18 (1)
1.2.3 Steel
19 (5)
1.2.3.1 Reinforcing Steel
19 (1)
1.2.3.2 Prestessing Steel
20 (4)
1.2.4 FRP
24 (1)
1.2.5 AASHTO Stress Limits for Concrete Segmental Bridges
25 (2)
1.2.5.1 Stress Limits for Concrete
25 (1)
1.2.5.2 Prestressing Steel
26 (1)
1.3 Basic Concept of Segmental Construction
27 (1)
1.4 Typical Segments
27 (8)
1.4.1 Typical Sections
27 (1)
1.4.2 Preliminary Dimensions
28 (3)
1.4.2.1 General
28 (1)
1.4.2.2 Girder Height h
29 (1)
1.4.2.3 Flange Thickness tt
30 (1)
1.4.2.4 Web Thickness tw
31 (1)
1.4.2.5 Web Spacing bt
31 (1)
1.4.2.6 Length of Top Flange Cantilever bc
31 (1)
1.4.3 Ducts
31 (3)
1.4.3.1 General
31 (1)
1.4.3.2 Duct Sizes
32 (1)
1.4.3.3 Locations of Tendons in the Ducts
32 (1)
1.4.3.4 Duct Spacing
33 (1)
1.4.3.5 Duct Radius and Tangent Length
33 (1)
1.4.3.6 Bonded and Unbounded Tendons
33 (1)
1.4.4 Joints between Segments
34 (1)
1.4.4.1 Match-Cast Joint
34 (1)
1.4.4.2 Cast-in-Place Closure Joint
34 (1)
1.5 Typical Construction Methods
35 (5)
1.5.1 Introduction
35 (1)
1.5.2 Span-By-Span Construction Method
35 (1)
1.5.3 Balanced Cantilever Segmental Construction Method
36 (2)
1.5.3.1 Precast Segments
36 (1)
1.5.3.2 Cast-in-Place Segments
37 (1)
1.5.4 Progressive Placement Construction
38 (1)
1.5.5 Incrementally Launched Construction
38 (1)
1.5.6 Spliced Precast Girder Construction
39 (1)
1.6 Economic Span Ranges
40 (1)
1.7 Post-Tensioning Systems and Operation
41 (4)
1.7.1 Introduction
41 (1)
1.7.2 Stressing Equipment
41 (3)
1.7.3 Anchorages
44 (1)
1.8 Post-Tensioning Steel and Anchorage Protection
45 (5)
1.9 General Design Procedures and Bridge Aesthetics
50 (7)
1.9.1 General Design Procedures
50 (1)
1.9.2 Segmental Bridge Aesthetics
51 (10)
1.9.2.1 Harmony with Surroundings
51 (1)
1.9.2.2 Proportion
51 (2)
1.9.2.3 Simplicity of Details
53 (1)
1.9.2.4 Artistic Shaping
53 (4)
References
57 (4)
Chapter 2 Loads on Bridges and General Design Methods 61 (44)
2.1 Introduction
61 (1)
2.2 Types of Loads on Concrete Segmental Bridges
61 (26)
2.2.1 General Description
61 (1)
2.2.2 Dead Loads
62 (1)
2.2.3 Live Loads
62 (3)
2.2.3.1 Vehicle Live Load
62 (3)
2.2.3.2 Pedestrian Live Load
65 (1)
2.2.4 Dynamic Loading due to Moving Vehicles
65 (5)
2.2.4.1 Dynamic Loading Analysis
65 (3)
2.2.4.2 Dynamic Loading Allowance: IM
68 (1)
2.2.4.3 Centrifugal Forces: CE
68 (1)
2.2.4.4 Braking Force: BR
69 (1)
2.2.4.5 Vehicular Collision Force: CT
70 (1)
2.2.5 Wind Loads
70 (2)
2.2.5.1 Introduction
70 (1)
2.2.5.2 Wind Pressure on Structures: WS
71 (1)
2.2.5.3 Wind Pressure Applied to Vehicles: WL
72 (1)
2.2.6 Earthquake Loads
72 (11)
2.2.6.1 Introduction
72 (4)
2.2.6.2 Earthquake Loads Determined by AASHTO LRFD Specifications
76 (7)
2.2.7 Water Loads (WA)
83 (1)
2.2.8 Vessel Collision Loads (CV)
84 (1)
2.2.9 Ice Loads (IC)
84 (1)
2.2.10 Temperature Loads
84 (1)
2.2.10.1 Uniform Temperature
84 (1)
2.2.10.2 Temperature Gradient
85 (1)
2.2.11 Miscellaneous Loads
85 (1)
2.2.12 Construction Loads
86 (1)
2.3 General Design Methods
87 (16)
2.3.1 Introduction
87 (1)
2.3.2 Basic Theory of the LRFD Method
88 (6)
2.3.2.1 Mathematical Models of Load and Resistance Variations
88 (3)
2.3.2.2 Probability of Failure and Safety Index
91 (1)
2.3.2.3 Determining Load and Resistance Factors
92 (2)
2.3.3 General Provisions of the AASHTO LRFD Method
94 (11)
2.3.3.1 General Design Equation
94 (2)
2.3.3.2 Design Limit States
96 (1)
2.3.3.3 Load Combinations and Load Factors for Design
97 (3)
2.3.3.4 Load Combinations and Load Factors for Segmental Bridge Construction
100 (1)
2.3.3.5 Resistance Factors
101 (2)
References
103 (2)
Chapter 3 Fundamentals of Segmental Bridge Analysis and Design 105 (114)
3.1 Basic Concepts of Prestressed Concrete Structures
105 (13)
3.1.1 General Behaviors of Prestressed Concrete Structures
105 (4)
3.1.2 Bending Analysis for Prestressed Girders
109 (5)
3.1.2.1 C-Line Method
109 (2)
3.1.2.2 Equivalent Load Method
111 (3)
3.1.3 Basic Design Concepts
114 (4)
3.1.3.1 Estimation of Concrete and Tendon Areas
114 (2)
3.1.3.2 Determination of Post-Tensioning Force and Efficiency Ratio of Cross Section
116 (1)
3.1.3.3 Determination of Tendon Placement Limiting Zone
116 (2)
3.2 Losses of Prestressing
118 (19)
3.2.1 Instantaneous Losses
119 (9)
3.2.1.1 Losses Due to Elastic Shortening of Concrete in Post-Tensioning Members
119 (2)
3.2.1.2 Losses Due to Duct Friction
121 (4)
3.2.1.3 Losses Due to Anchor Set
125 (2)
3.2.1.4 Elongation of Tendons
127 (1)
3.2.2 Time Dependent Losses
128 (2)
3.2.2.1 Time Dependent Losses for Segmental Bridges
128 (1)
3.2.2.2 Estimations of Time Dependent Losses for Preliminary Design of Segmental Bridges
128 (2)
3.3 Bending and Torsion of I-Girder
130 (1)
3.3.1 Introduction
130 (1)
3.3.2 Bending
130 (2)
3.3.3 Torsion
132 (5)
3.4 Bending and Torsion of Box Girders
137 (17)
3.4.1 Introduction
137 (1)
3.4.2 Bending
138 (5)
3.4.2.1 Shear Stress
138 (3)
3.4.2.2 Flexural Normal Stress Distribution in the Flanges and Effective Width
141 (2)
3.4.3 Torsion
143 (11)
3.4.3.1 Pure Torsion
143 (2)
3.4.3.2 Distortion
145 (9)
3.5 Bending and Pure Torsion of Curved Girders
154 (4)
3.5.1 Equilibrium of Forces
154 (2)
3.5.2 Relation between Internal Force and Displacement
156 (2)
3.6 Requirements and Determination of Strength Resistances for Flexural and Torsion Members
158 (33)
3.6.1 General Requirements
158 (1)
3.6.2 Determination of Flexural Strength
158 (9)
3.6.2.1 Girders with Bonded Tendons
158 (3)
3.6.2.2 Girders with Unbonded Tendons
161 (2)
3.6.2.3 Girders with Both Bonded and Unbonded Tendons
163 (1)
3.6.2.4 Nominal Flexure Residence for General Cross Sections Recommended by AASHTO Specifications
163 (2)
3.6.2.5 AASHTO Specifications on Minimum Flexural Reinforcement and Control of Cracking
165 (1)
3.6.2.6 Summary of Flexural Strength Checking
166 (1)
3.6.3 Determination and Check of Longitudinal Shear and Torsion Strengths
167 (19)
3.6.3.1 Shear Strength
167 (14)
3.6.3.2 Torsional Resistance
181 (3)
3.6.3.3 Transverse Reinforcement for Sections Subjected to Combined Shear and Torsion
184 (1)
3.6.3.4 AASHTO Simplified Methods for Determining Shear and Torsion Resistances for Segmental Box Bridges
185 (1)
3.6.3.5 Summary of Shear Strength Checking
186 (1)
3.6.4 Interface Shear Strength
186 (5)
3.7 Requirements and Determination of Strength Resistances for Axial and Biaxial Bending Members
191 (7)
3.7.1 Introduction
191 (1)
3.7.2 Load-Moment Interaction
191 (5)
3.7.3 Determination of Axial Load and Biaxial Flexure Resistances by AASHTO LRFD Specifications
196 (1)
3.7.3.1 Axial Resistance
196 (1)
3.7.3.2 Biaxial Flexure Resistance
196 (1)
3.7.4 Limitations of Reinforcement for Axial Compression Members
197 (1)
3.7.4.1 Maximum Longitudinal Reinforcement for Axial Members
197 (1)
3.7.4.2 Minimum Longitudinal Reinforcement for Axial Members
197 (1)
3.7.5 General Consideration of Slenderness Effects
198 (1)
3.7.6 Summary of Design Procedures of Compression Members
198 (1)
3.8 Analysis and Strength Validation of Anchorage Zone
198 (15)
3.8.1 Pretensioning Anchorage Zone
198 (2)
3.8.2 Post-Tensioned Anchorage Zone
200 (13)
3.8.2.1 General
200 (4)
3.8.2.2 Design of Local Zone
204 (1)
3.8.2.3 Design of General Zone
205 (8)
3.9 General Structural Design by Strut-and-Tie Model
213 (2)
3.9.1 Introduction
213 (1)
3.9.2 Determination of Compressive Strut Strength
213 (1)
3.9.2.1 Strength of Unreinforced Struts
213 (1)
3.9.2.2 Strength of Reinforced Strut
214 (1)
3.9.3 Determination of Tension Tie Strength
214 (1)
3.9.4 Stress Limits in Node Regions
215 (1)
3.10 Service Stress Check Required by AASHTO LRFD Specifications
215 (1)
3.10.1 Stress Validation for Prestressing Tendons
215 (1)
3.10.2 Concrete Stress Validations
215 (4)
3.10.2.1 Temporary Stresses before Losses
215 (1)
3.10.2.2 Stresses at Service Limit State after Losses
215 (1)
References
216 (3)
Chapter 4 General Analytical Theory of Super-Structures 219 (94)
4.1 Introduction
219 (1)
4.2 Fundamentals of Analysis of Indeterminate Bridge Structures
219 (28)
4.2.1 Determination of Girder Displacements
219 (5)
4.2.1.1 Conjugate-beam method
219 (3)
4.2.1.2 Method of Virtual Work
222 (2)
4.2.2 Analysis of Indeterminate Bridge Structures by Force Method
224 (2)
4.2.3 Analysis of Indeterminate Bridge Structures by Displacement Method
226 (4)
4.2.4 Analysis of Indeterminate Bridge Structures by Moment Distribution Method
230 (6)
4.2.4.1 Introduction
230 (1)
4.2.4.2 Distribution Factor (DF)
231 (1)
4.2.4.3 Carryover Factor
232 (1)
4.2.4.4 Procedure for Moment Distribution
233 (3)
4.2.5 Bridge Analysis by Finite-Element Methods
236 (11)
4.2.5.1 Introduction
236 (1)
4.2.5.2 Procedure for Finite-Element Method (FEM)
236 (5)
4.2.5.3 Common Finite Elements Used in Segmental Bridge Analysis
241 (6)
4.3 Longitudinal Analysis of Segmental Bridges
247 (55)
4.3.1 Introduction
247 (1)
4.3.2 Analysis of Secondary Forces Due to Post-Tensioning Tendons and Design Considerations
247 (6)
4.3.2.1 Analysis of Post-Tensioned Continuous Girders by Force Method
247 (3)
4.3.2.2 General Procedures for Analyzing Post-Tensioned Continuous Bridge Structures by the Equivalent Load Method
250 (1)
4.3.2.3 Useful Concepts and Properties of Post-Tensioned Continuous Bridge Structures
251 (1)
4.3.2.4 General Procedures for Tendon Layout in Continuous Prestressed Structures
252 (1)
4.3.3 Analysis of Secondary Forces Due to Temperature
253 (8)
4.3.3.1 Introduction
253 (1)
4.3.3.2 Deformation Due to Linear Distributed Temperature Gradient
254 (2)
4.3.3.3 Deformation Due to Nonlinear Distributed Temperature Gradient and Internal Restrained Stress
256 (2)
4.3.3.4 Determination of Secondary Forces Due to Temperature Gradient
258 (3)
4.3.4 Analysis of Secondary Forces Due to Concrete Creep
261 (23)
4.3.4.1 Relationships between Creep Strain and Stress
261 (4)
4.3.4.2 Determination of Displacements Due to Creep under Constant Loadings
265 (1)
4.3.4.3 Determination of Displacements Due to Time- Dependent Loading
266 (1)
4.3.4.4 Determination of Secondary Force Due to Creep
267 (17)
4.3.5 Analysis of Secondary Forces Due to Shrinkage
284 (1)
4.3.6 Analysis of Secondary Forces Due to Settlements of Supports
285 (2)
4.3.7 Geometrical Nonlinear Analysis
287 (7)
4.3.7.1 Introduction
287 (1)
4.3.7.2 Geometrical Nonlinear Analysis by FEM
287 (3)
4.3.7.3 Approximate Method for Considering P-A Effect
290 (4)
4.3.8 Material Non linear Analysis
294 (4)
4.3.8.1 Introduction
294 (1)
4.3.8.2 Modified Stiffness Method
294 (4)
4.3.9 Stability Analysis by Finite-Element Method
298 (1)
4.3.10 Bridge Modeling by the Finite-Element Method
299 (2)
4.3.10.1 Straight Bridges
299 (1)
4.3.10.2 Curved Bridge
300 (1)
4.3.11 Remarks on Deflection and Camber Calculations
301 (1)
4.4 Transverse Analysis of Segmental Bridges
302 (8)
4.4.1 Introduction
302 (1)
4.4.2 Two-Dimensional Analysis
303 (5)
4.4.2.1 Transverse Analysis with Uniform Loadings
303 (1)
4.4.2.2 Transverse Analysis with Truck Loadings
303 (5)
4.4.3 Three-Dimensional Analysis
308 (2)
References
310 (3)
Chapter 5 Design of Span-by-Span Construction and Common Details of Concrete Segmental Bridges 313 (90)
5.1 Introduction
313 (1)
5.2 Longitudinal Design
313 (23)
5.2.1 Span Arrangement
313 (2)
5.2.1.1 Span Length and Girder Depth
313 (1)
5.2.1.2 Span Arrangement
314 (1)
5.2.2 Selection of Typical Section
315 (1)
5.2.3 Layout of Longitudinal Post-Tensioning Tendons and Bars
315 (6)
5.2.3.1 Introduction
315 (1)
5.2.3.2 Internal Tendons
316 (1)
5.2.3.3 External Tendons
316 (1)
5.2.3.4 Future Tendons
317 (1)
5.2.3.5 Temporary Post-Tensioning Bars
317 (3)
5.2.3.6 Minimum Clearance Requirements at Anchorages for Replaceable and Typical Used Sizes of Tendons and Bars
320 (1)
5.2.4 Special Segments and Detailing
321 (3)
5.2.4.1 Introduction
321 (1)
5.2.4.2 Deviator Segment
321 (1)
5.2.4.3 Pier Segments
321 (3)
5.2.5 Segment Joints
324 (5)
5.2.5.1 Introduction
324 (1)
5.2.5.2 Epoxy Joint
324 (1)
5.2.5.3 Dry Joint
325 (2)
5.2.5.4 Non-Reinforced Closure Joint
327 (1)
5.2.5.5 Cast-in-Place Reinforced Joint
327 (2)
5.2.6 Design Considerations for Maintenance
329 (1)
5.2.6.1 Clear Height of Box Girder
329 (1)
5.2.6.2 Access Opening
329 (1)
5.2.6.3 Lighting
329 (1)
5.2.7 Longitudinal Analysis and Estimation of Post-Tensioning Tendons
329 (4)
5.2.7.1 Introduction
329 (2)
5.2.7.2 Analysis of Permanent Load Effects
331 (1)
5.2.7.3 Analysis of Live Load Effects
331 (1)
5.2.7.4 Estimation of Post-Tensioning Tendons
332 (1)
5.2.8 Capacity Verifications
333 (3)
5.2.8.1 Introduction
333 (1)
5.2.8.2 Service Limit State Stress Check
333 (3)
5.2.8.3 Strength
336 (1)
5.3 Design of Box Section Components
336 (8)
5.3.1 Top Slab
336 (7)
5.3.1.1 Introduction
336 (1)
5.3.1.2 Loading Application and Transverse Analysis
337 (1)
5.3.1.3 Transverse Post-Tensioning Layout
338 (1)
5.3.1.4 Estimation of Transverse Post-Tensioning Tendons
338 (2)
5.3.1.5 Capacity Verifications
340 (3)
5.3.2 Web
343 (1)
5.3.3 Bottom Slab
343 (1)
5.4 Design of Diaphragms and Deviations
344 (11)
5.4.1 Design of Diaphragms
344 (7)
5.4.1.1 Introduction
344 (1)
5.4.1.2 Design for Anchoring Post-Tensioning Tendons
344 (3)
5.4.1.3 Design Considerations for Transferring Super-Structure Loadings to Substructure
347 (4)
5.4.2 Design of Deviators
351 (4)
5.5 Summarization of Design Procedures
355 (1)
5.6 Design Example I: Span-by-Span Bridge
356 (46)
5.6.1 Design Requirements
356 (1)
5.6.1.1 Design Specifications
356 (1)
5.6.1.2 Traffic Requirements
357 (1)
5.6.1.3 Design Loads
357 (1)
5.6.1.4 Materials
357 (1)
5.6.2 Bridge Span Arrangement and Typical Section
357 (1)
5.6.2.1 Span Arrangement
357 (1)
5.6.2.2 Typical Section and Segment Layout
358 (1)
5.6.3 Tendon Layout
358 (1)
5.6.4 Bridge Longitudinal Analysis
359 (16)
5.6.4.1 Assumptions of Construction Sequences
359 (3)
5.6.4.2 Analytical Models
362 (3)
5.6.4.3 Sectional Properties
365 (2)
5.6.4.4 Effects Due to Dead Loads
367 (1)
5.6.4.5 Effects Due to Live Loads
367 (2)
5.6.4.6 Effect Due to Temperatures
369 (1)
5.6.4.7 Effects of Post-Tendons
369 (2)
5.6.4.8 Secondary Effect of Creep and Shrinkage
371 (2)
5.6.4.9 Effect of Wind Loading
373 (2)
5.6.4.10 Summary of Effects
375 (1)
5.6.5 Bridge Longitudinal Capacity Verification
375 (9)
5.6.5.1 Service Limit
375 (5)
5.6.5.2 Strength Limit
380 (4)
5.6.6 Transverse Analysis and Capacity Verification
384 (6)
5.6.6.1 Effects of Dead Loads
384 (1)
5.6.6.2 Effects of Live Loads
384 (1)
5.6.6.3 Effects of Post-Tensioning Loads
385 (1)
5.6.6.4 Capacity Verifications
386 (4)
5.6.7 Diaphragm Design
390 (8)
5.6.7.1 Longitudinal Design of Diaphragm
390 (5)
5.6.7.2 Transverse Design of Diaphragm
395 (3)
5.6.8 Deviation Design
398 (3)
5.6.8.1 Determination of Pull-out Reinforcement
398 (2)
5.6.8.2 Determination of Minimum Shear Concrete Area and Friction Shear Reinforcement
400 (1)
5.6.8.3 Required Flexure Reinforcement in Web Due to Deviator Forces
400 (1)
5.6.9 Remarks of the Design Example
401 (1)
References
402 (1)
Chapter 6 Design of Cantilever Segmental Bridges 403 (90)
6.1 Introduction
403 (1)
6.2 Span Arrangement and Types of Segments
403 (2)
6.3 Selection of Typical Sections
405 (2)
6.4 Estimation and Layout of Post-Tensioning Tendons
407 (5)
6.4.1 Estimation and Selection of Tendons
407 (1)
6.4.2 Top Slab Cantilever Tendons
408 (1)
6.4.3 Bottom Span Tendons
408 (1)
6.4.4 Top Span Tendons
409 (3)
6.4.5 Draped Continuity Tendons and Future Tendons
412 (1)
6.5 Erection Post-Tensioning Bars
412 (1)
6.6 Design Features of Segments
413 (2)
6.6.1 Typical Segment
413 (1)
6.6.2 Pier Segment
413 (1)
6.6.2.1 Precast Pier Segment
413 (1)
6.6.2.2 Precast Shell
413 (1)
6.6.3 Closure Segment
413 (2)
6.7 Temporary Stability of Cantilevers
415 (4)
6.7.1 Introductions
415 (3)
6.7.2 Double Rows of Elastomeric Bearings
418 (1)
6.7.3 Flexible Piers
418 (1)
6.8 Feature of Longitudinal Analysis and Capacity Validations
419 (4)
6.9 Design of Shear Keys at Match-Cast Joints
423 (2)
6.9.1 Shear Key Detailing
423 (1)
6.9.2 Determination of Key Shear Strength
424 (1)
6.10 Construction Analysis and Capacity Verifications
425 (3)
6.11 Deflection Calculation and Cambers
428 (3)
6.11.1 Determination of Deflection of Cantilevers During Construction
428 (2)
6.11.2 Camber Determinations
430 (1)
6.11.2.1 Deflections Development During Construction
430 (1)
6.11.2.2 Camber Method in Construction
431 (1)
6.12 Curved Segmental Bridge Design Features
431 (20)
6.12.1 Concept of Concordant Tendons in Curved Girders and Determination of Tendon Locations
432 (10)
6.12.1.1 Concept of Concordant Tendons
432 (1)
6.12.1.2 Determination of Tendon Locations in Cantilever Girders
432 (4)
6.12.1.3 Concept of Tendon Layout in Simply Supported Statically Indeterminate Curved Girders
436 (1)
6.12.1.4 Effect of Curvatures in Continuous Girders
436 (6)
6.12.2 Reducing Support Uplift Forces and Bearing Arrangement
442 (2)
6.12.3 Equivalent Loads and Effects of Curved Tendons
444 (5)
6.12.3.1 Equivalent Loads
444 (1)
6.12.3.2 Effects of Curved Tendons
445 (1)
6.12.3.3 Design Consideration for Out-of-Plane Forces
446 (3)
6.12.4 In-Plane Deformations of Curved Bridges and Support Arrangements
449 (2)
6.12.5 Segment Treatment of Horizontal Curvature
451 (1)
6.13 Summarization of Design Procedures for Balanced Cantilever Bridges
451 (1)
6.14 Design Example II-Balanced Cantilever Bridge
452 (38)
6.14.1 Span Arrangement and Typical Section
452 (1)
6.14.1.1 Span Arrangement
452 (1)
6.14.1.2 Typical Section and Segment Layout
453 (1)
6.14.2 Tendon Layout
453 (5)
6.14.3 Construction Sequences
458 (3)
6.14.4 Bridge Longitudinal Analysis and Capacity Check
461 (23)
6.14.4.1 Section Properties and Flange Effective Widths
461 (2)
6.14.4.2 General Analytical Model and Assumptions
463 (2)
6.14.4.3 Cantilever System Analysis
465 (1)
6.14.4.4 One-Span Cantilever System
466 (1)
6.14.4.5 Two-Span Continuous Cantilever
467 (1)
6.14.4.6 Completed Three-Span Continuous Girder
468 (1)
6.14.4.7 Final Bridge Analysis
469 (4)
6.14.4.8 Capacity Check
473 (11)
6.14.5 Construction Analysis and Check
484 (10)
6.14.5.1 Capacity Check during Free Cantilever Construction
484 (2)
6.14.5.2 Design of Temporary PT Bars
486 (3)
6.14.5.3 Design of Match-Cast Shear Keys
489 (1)
References
490 (3)
Chapter 7 Design of Incrementally Launched Segmental Bridges 493 (66)
7.1 Introduction
493 (1)
7.2 General Design Features of Incrementally Launched Segmental Bridges
494 (4)
7.2.1 Bridge Alignment
494 (1)
7.2.2 Bridge Span Arrangement and Segment Division
494 (1)
7.2.2.1 Span Arrangement
494 (1)
7.2.2.2 Segment Division
494 (1)
7.2.3 Typical Sections and Estimation of Preliminary Dimensions
495 (3)
7.2.3.1 Typical Sections
495 (2)
7.2.3.2 Girder Depth
497 (1)
7.2.3.3 Estimation of Dimensions for Single-Cell Box Section
497 (1)
7.3 Typical Launching Methods
498 (8)
7.3.1 Pulling Launching System
500 (1)
7.3.2 Friction Launching System
500 (3)
7.3.2.1 General Launching Principle and Procedures
500 (2)
7.3.2.2 Maximum Launching Bridge Length by One-Location Friction Launching
502 (1)
7.3.3 Launching Bearings and Side Guides
503 (3)
7.3.3.1 Launching Bearings
503 (2)
7.3.3.2 Side Guides
505 (1)
7.4 Analysis and Behavior of Incrementally Launched Bridges
506 (7)
7.4.1 Introduction
506 (1)
7.4.2 General Analysis of the Effects Due to Girder Self-Weight and Launching Nose
506 (2)
7.4.3 Determination of Maximum and Minimum Moments Due to Girder Self-Weight and Launching Nose
508 (2)
7.4.3.1 Maximum Positive Moment
508 (1)
7.4.3.2 Minimum Negative Moment
509 (1)
7.4.4 Analytical Example
510 (3)
7.4.4.1 Determination of Maximum Bending Moment
511 (1)
7.4.4.2 Determination of Minimum Negative Moment
512 (1)
7.5 Methods for Reducing Negative Moments of Super-Structures during Launching
513 (6)
7.5.1 Launching Nose
514 (4)
7.5.1.1 Typical Launching Nose
514 (1)
7.5.1.2 Attachment of Launching Nose to Concrete Girder
514 (1)
7.5.1.3 Optimum Length and Stiffness of Launching Nose
515 (3)
7.5.2 Tower-and-Stay System
518 (1)
7.6 Estimation of Longitudinal Tendons and Tendon Layout
519 (3)
7.6.1 Introduction
519 (1)
7.6.2 Launching Tendons
520 (2)
7.6.2.1 Estimation of Launching Tendons
520 (2)
7.6.3 Permanent Tendons
522 (1)
7.7 Tendon Layout
522 (3)
7.7.1 Launching Tendon Layout
522 (2)
7.7.1.1 Coupled Straight Tendons
522 (1)
7.7.1.2 Overlapped Straight Tendons
523 (1)
7.7.1.3 Polygonal and Curved Tendon Layouts
524 (1)
7.7.2 Permanent Final Tendon Layout
524 (1)
7.8 Longitudinal and Transverse Analysis of Super-Structures
525 (1)
7.9 Design and Details of Diaphragms and Blisters
525 (1)
7.10 Launching Effects on Substructures and Design Consideration of Pier
525 (7)
7.10.1 Longitudinal Forces on Pier during Launching
525 (3)
7.10.1.1 Upward Launching
526 (2)
7.10.1.2 Downward Launching
528 (1)
7.10.2 Transverse Forces during Launching
528 (3)
7.10.2.1 Transverse Force Due to Wind and Transverse Slope
528 (1)
7.10.2.2 Radial Force Due to Curvature
529 (1)
7.10.2.3 Analytical Example
530 (1)
7.10.3 Temporary Pier Staying Cables for Reducing the Effects of Launching Forces
531 (1)
7.10.4 Pier Cap Dimensioning for Sliding Bearing
532 (1)
7.11 Design Example III: Incrementally Launched Segmental Bridge
532 (25)
7.11.1 Design Requirements
532 (2)
7.11.1.1 Design Specifications
532 (1)
7.11.1.2 Traffic Requirements
532 (1)
7.11.1.3 Design Loads
533 (1)
7.11.1.4 Materials
533 (1)
7.11.2 Bridge Span Arrangement and Typical Section
534 (1)
7.11.2.1 Span Arrangement
534 (1)
7.11.2.2 Typical Sections
534 (1)
7.11.3 Segment Layout and Construction Sequence
535 (3)
7.11.3.1 Segment Layout
535 (1)
7.11.3.2 Construction Sequences and Assumptions
536 (2)
7.11.4 Longitudinal Tendon Layout
538 (2)
7.11.5 Bridge Longitudinal Analysis
540 (11)
7.11.5.1 Bridge Model and Determination of Section Properties
540 (1)
7.11.5.2 Construction Analysis and Estimation of Launching Tendons
541 (3)
7.11.5.3 Bridge Analysis in Service Stage
544 (7)
7.11.6 Bridge Capacity Verification
551 (9)
7.11.6.1 Service Limit
551 (3)
7.11.6.2 Strength Limit
554 (3)
7.12 Capacity Check during Incremental Launching Construction
557 (1)
7.13 Remarks on Design Example III
558 (1)
References
558 (1)
Chapter 8 Design of Post-Tensioned Spliced Girder Bridges 559 (58)
8.1 Introduction
559 (1)
8.2 Typical Bridge Cross Sections
560 (3)
8.2.1 I-Girder
560 (2)
8.2.2 U-Beam
562 (1)
8.3 Span Arrangements and Construction Sequences
563 (7)
8.3.1 Introduction
563 (1)
8.3.2 Simple Span
564 (1)
8.3.3 Continuous Spans and Segment Arrangement
565 (5)
8.3.3.1 General
565 (1)
8.3.3.2 Continuous Spliced I-Girder Bridges
566 (1)
8.3.3.3 Continuous Spliced U-Girder Bridges
567 (3)
8.3.4 Strongback and Lateral Bracings for Spliced I-Girders during Construction
570 (1)
8.3.4.1 Strongback
570 (1)
8.3.4.2 Temporary Lateral Bracings of Girders
570 (1)
8.4 Bridge Analysis and Capacity Check
570 (5)
8.4.1 Introduction
570 (1)
8.4.2 Analysis of Permanent Load Effects
571 (1)
8.4.3 Analysis of Live Load Effects
571 (2)
8.4.3.1 Introduction
571 (1)
8.4.3.2 Load Distribution Method
571 (2)
8.4.3.3 Load Applications
573 (1)
8.4.4 Estimation of Post-Tensioning Tendons and Pretensioning Strands
573 (1)
8.4.4.1 Estimation of Post-Tensioning Tendons
573 (1)
8.4.4.2 Estimation of Pretensioning Strands
574 (1)
8.4.5 Capacity Verification
574 (1)
8.4.5.1 Introduction
574 (1)
8.4.5.2 Service Limit State Stress Check
574 (1)
8.4.5.3 Strength Check
575 (1)
8.5 Layout of Tendons and Details
575 (5)
8.5.1 General
575 (1)
8.5.2 Spliced I-Girder Bridges
576 (1)
8.5.3 Spliced U-Girder Bridges
577 (3)
8.6 Design Example IV: Spliced Three-Span Continuous I-Girder Bridge
580 (34)
8.6.1 Design Requirements
580 (1)
8.6.1.1 Design Specifications
580 (1)
8.6.1.2 Traffic Requirements
580 (1)
8.6.1.3 Design Loads
580 (1)
8.6.1.4 Materials
580 (1)
8.6.2 Bridge Span Arrangement and Typical Section
581 (2)
8.6.2.1 Span Arrangement
581 (1)
8.6.2.2 Typical Section and Segment Layout
581 (2)
8.6.3 Construction Sequences
583 (3)
8.6.4 Layout of Post-Tensioning Tendons and Pretensioning Strands
586 (1)
8.6.4.1 Layout of Pretensioning Strands
586 (1)
8.6.4.2 Layout of Post-Tensioning Tendons
586 (1)
8.6.5 Detailing and Reinforcement
586 (2)
8.6.5.1 Anchorage End
586 (1)
8.6.5.2 Splice End of Segments
586 (1)
8.6.5.3 Splice Joint
586 (2)
8.6.6 General Analysis of Bridge Super-Structure
588 (13)
8.6.6.1 General
588 (1)
8.6.6.2 Section Properties
588 (2)
8.6.6.3 Assumption of Construction Schedules
590 (1)
8.6.6.4 Analytical Models
591 (3)
8.6.6.5 Analytical Results
594 (2)
8.6.6.6 Effects of Live Loads
596 (1)
8.6.6.7 Effect of Prestressing Forces
597 (2)
8.6.6.8 Effects of Concrete Creep and Shrinkage
599 (1)
8.6.6.9 Effect of Temperatures
599 (1)
8.6.6.10 Summary of Effects at Some Control Sections
600 (1)
8.6.7 Capacity Validations
601 (17)
8.6.7.1 Service Limit
601 (9)
8.6.7.2 Strength Limit
610 (3)
8.6.7.3 End Zone Splitting Vertical Reinforcement Check
613 (1)
8.6.7.4 Live Load Deflection Check
614 (1)
References
614 (3)
Chapter 9 Design of Concrete Segmental Arch Bridges 617 (84)
9.1 Introduction
617 (1)
9.2 Preliminary Design of Concrete Segmental Arch Bridges
618 (14)
9.2.1 Primary Components and Terminologies of Arch Bridges
618 (1)
9.2.2 Types of Arch Bridges
619 (1)
9.2.3 Typical Sections of Arch Rib and Arch Ring
620 (1)
9.2.4 Typical Details at Arch Rib Ends
621 (1)
9.2.5 Components and Preliminary Dimensions of Deck Arch Bridges
622 (4)
9.2.5.1 Introduction
622 (2)
9.2.5.2 Rise-to-Span Ratio
624 (1)
9.2.5.3 Profile of Arch Rib
624 (1)
9.2.5.4 Spandrel Structure
625 (1)
9.2.6 Components and Preliminary Dimensions of Through and Half-Through Arch Bridges
626 (3)
9.2.6.1 Introduction
626 (1)
9.2.6.2 Arch Ring
627 (1)
9.2.6.3 Hangers
628 (1)
9.2.6.4 Deck System
629 (1)
9.2.7 Typical Span Arrangement of Arch Bridges
629 (1)
9.2.8 Inclined Legged Frame Bridges
630 (2)
9.3 Behaviors and Analysis of Arch Bridges
632 (35)
9.3.1 Introduction
632 (1)
9.3.2 Analysis of Three-Hinged Arches and Basic Behaviors of Arch Bridges
632 (7)
9.3.2.1 Distinguished Behaviors of Arches
632 (2)
9.3.2.2 Selection of the Shapes of Arch Rib Axis
634 (5)
9.3.2.3 Influence Lines of Three-Hinged Arches
639 (1)
9.3.3 Analysis of Two-Hinged Arch Bridges
639 (4)
9.3.4 Analysis of Hingeless Arch Bridges
643 (8)
9.3.4.1 General Equilibrium Equations by Force Method
643 (1)
9.3.4.2 Elastic Center Method
644 (2)
9.3.4.3 Influence Lines of Hingeless Arches
646 (1)
9.3.4.4 Effect of Elastic Shortening of Arch Ribs
647 (2)
9.3.4.5 Effect of Uniform Temperature
649 (1)
9.3.4.6 Effect of Support Displacements
649 (2)
9.3.5 Buckling and Stability of Arch Bridges
651 (12)
9.3.5.1 In-Plane Buckling of Arch Bridges
652 (4)
9.3.5.2 Out-of-Plane Buckling of Arch Bridges
656 (7)
9.3.6 Arch Bridge Analysis by Finite-Element Method
663 (1)
9.3.7 Effect of Large Deflections
664 (1)
9.3.8 Dynamic Behaviors and Dynamic Loading of Arch Bridges
664 (3)
9.3.8.1 General
664 (1)
9.3.8.2 Dynamic Behaviors and Dynamic Loading Estimation of Deck Arch Bridge
665 (1)
9.3.8.3 Dynamic Behaviors and Dynamic Loading Estimation of Half-Through Arch Bridge
666 (1)
9.4 General Construction Methods of Arch Bridges
667 (3)
9.4.1 Falsework Method
667 (1)
9.4.2 Cable-Stayed Cantilever Method
668 (1)
9.4.3 Adjustment and Control of Arch Rib Forces
669 (2)
9.4.3.1 Temporary Hinge Method
669 (1)
9.4.3.2 Jacking Method
669 (1)
9.5 Summary of General Analysis and Design Procedures for Segmental Arch Bridges
670 (1)
9.6 Design Example V
671 (29)
9.6.1 Introduction
671 (1)
9.6.2 Design Requirements
671 (1)
9.6.2.1 Design Specifications
671 (1)
9.6.2.2 Traffic Requirements
671 (1)
9.6.2.3 Design Loads
672 (1)
9.6.2.4 Materials
672 (1)
9.6.3 Bridge Span Arrangement and Determination of Principal Dimensions
672 (6)
9.6.3.1 Bridge Span Arrangement and Typical Section
672 (2)
9.6.3.2 Arch Ring and Ribs
674 (1)
9.6.3.3 Spandrel Structures
675 (3)
9.6.3.4 Skew Back and Abutment
678 (1)
9.6.4 Bridge Analysis
678 (9)
9.6.4.1 Analytical Models
678 (3)
9.6.4.2 Sectional Properties
681 (1)
9.6.4.3 Effects Due to Dead Loads
681 (1)
9.6.4.4 Effects Due to Live Loads
681 (3)
9.6.4.5 Effect Due to Temperatures
684 (1)
9.6.4.6 Secondary Effect of Creep and Shrinkage
685 (1)
9.6.4.7 Effects of Support Displacement
686 (1)
9.6.4.8 Summary of Effects
686 (1)
9.6.5 Verification of Reinforcement Limits and Capacity of Arch Ring
687 (9)
9.6.5.1 General
687 (1)
9.6.5.2 Verification of the Reinforcement Limits
688 (2)
9.6.5.3 Capacity Verification
690 (6)
9.6.6 Construction
696 (4)
9.6.6.1 General Construction Sequences
696 (1)
9.6.6.2 Arrangement of Erection Cables System
696 (1)
9.6.6.3 Erection Sequences of Arch Ribs
697 (3)
9.6.7 Example Remarks
700 (1)
References
700 (1)
Chapter 10 Design of Concrete Segmental Cable-Stayed Bridges 701 (118)
10.1 Introduction
701 (1)
10.2 Categories and Structural Systems of Cable-Stayed Bridges
701 (5)
10.2.1 Conventional Cable-Stayed Bridges
702 (3)
10.2.1.1 Floating System
702 (1)
10.2.1.2 Semi-Floating System
703 (1)
10.2.1.3 Pylon-Beam System
704 (1)
10.2.1.4 Frame System
704 (1)
10.2.2 Special Cable-Stayed Bridges
705 (1)
10.2.2.1 Extradosed Prestressed System
705 (1)
10.2.2.2 Partial Anchor System
706 (1)
10.3 General Layout and Components Detailing of Conventional Cable-Stayed Bridges
706 (30)
10.3.1 Span Arrangements
706 (1)
10.3.1.1 Arrangement of Two-Pylon Three-Span Bridges
706 (1)
10.3.1.2 Arrangement of Single-Pylon Two-Span Bridges
706 (1)
10.3.1.3 Arrangement of Cable-Stayed Bridges with Four or More Spans
706 (1)
10.3.1.4 Auxiliary Piers and Approach Spans
707 (1)
10.3.2 Layout of Cable Stays
707 (3)
10.3.2.1 Layout in the Longitudinal Direction
707 (2)
10.3.2.2 Layout in the Transverse Direction
709 (1)
10.3.3 General Design Considerations and Detailing of Main Girders
710 (7)
10.3.3.1 Functions and General Dimensioning of Main Girders
710 (1)
10.3.3.2 Typical Sections
710 (3)
10.3.3.3 Preliminary Determination of Cross Sections
713 (1)
10.3.3.4 Arrangement of Segments and Details
713 (1)
10.3.3.5 Anchor Types of Stay Cables in Main Girders
714 (3)
10.3.4 Layout and Detailing of Pylons
717 (10)
10.3.4.1 Introduction
717 (1)
10.3.4.2 Layout in Longitudinal Direction
717 (1)
10.3.4.3 Layout in Transverse Direction
718 (1)
10.3.4.4 Typical Section of Pylons
719 (1)
10.3.4.5 Stay Cable Anchor Types in Pylons
719 (4)
10.3.4.6 Design Examples of Pylons and Aesthetics
723 (4)
10.3.5 Types and Detailing of Stay Cables
727 (11)
10.3.5.1 Types of Stay Cables and General Material Requirements
727 (4)
10.3.5.2 Anchorages
731 (1)
10.3.5.3 Dampers
732 (4)
10.4 Typical Construction Procedure
736 (2)
10.5 Analysis, Behaviors, and Capacity Verifications of Cable-Stayed Bridges
738 (34)
10.5.1 General
738 (1)
10.5.2 Static Analysis
738 (19)
10.5.2.1 Modeling and Analysis by Finite-Element Method
738 (3)
10.5.2.2 Determination of Cable Tension and Rotation Angles at Cable Ends
741 (1)
10.5.2.3 Cable Bending at Anchorage
742 (1)
10.5.2.4 Bending in Cable Free Length
743 (1)
10.5.2.5 Geometrical Nonlinear Effects
743 (1)
10.5.2.6 Basic Static Behaviors of Cable-Stayed Bridges
744 (4)
10.5.2.7 Determination of Cable Forces
748 (7)
10.5.2.8 Determination of Cable Initial Stressing Forces during Cantilever Construction
755 (1)
10.5.2.9 Adjustment and Measurement of Cable Forces
756 (1)
10.5.3 Stability Analysis
757 (4)
10.5.3.1 Introduction
757 (1)
10.5.3.2 Approximate Analytical Methods
757 (4)
10.5.4 Wind Action on Cable-Stayed Bridges and Wind-Induced Vibration
761 (7)
10.5.4.1 Static Wind Action
761 (1)
10.5.4.2 Wind Dynamic Action
762 (6)
10.5.4.3 Remark and Summary
768 (1)
10.5.5 Capacity Verifications
768 (4)
10.5.5.1 Introduction
768 (1)
10.5.5.2 Design Considerations of Stay Cables and Capacity Validations
768 (4)
10.6 Design Example VI
772 (45)
10.6.1 Introduction
772 (1)
10.6.2 Design Criteria
773 (1)
10.6.2.1 Design Specifications
773 (1)
10.6.2.2 Minimum Opening
773 (1)
10.6.2.3 Traffic Requirements
773 (1)
10.6.2.4 Design Loads
773 (1)
10.6.2.5 Materials
773 (1)
10.6.3 General Arrangement of the Bridge
774 (3)
10.6.4 Principal Dimensions and Cast Segment Layout of Main Girder
777 (3)
10.6.4.1 Principal Dimensions of Main Girder
777 (1)
10.6.4.2 Layout of Cast Segments
777 (2)
10.6.4.3 Layout of Post-Tensioning Tendons and Bars
779 (1)
10.6.4.4 Stay Cable Anchorages in Main Girder
780 (1)
10.6.5 Design and Principal Dimensions of the Pylon
780 (3)
10.6.5.1 Principal Dimensions of the Pylon and Pier
780 (1)
10.6.5.2 Stay Cable Anchorages in Pylon
781 (2)
10.6.5.3 Layouts of Typical Post-Tensioning Tendons in Pylon
783 (1)
10.6.6 Construction Sequence
783 (5)
10.6.7 Bridge Analysis
788 (13)
10.6.7.1 Properties of Cross Sections
788 (1)
10.6.7.2 Analytical Model
788 (1)
10.6.7.3 Effects Due to Dead Loads
789 (1)
10.6.7.4 Effects Due to Live Loads
789 (2)
10.6.7.5 Effects of Prestressing Force
791 (1)
10.6.7.6 Effects of Creep and Shrinkage
791 (1)
10.6.7.7 Effect of Wind Loading
791 (2)
10.6.7.8 Effect of Earthquakes
793 (1)
10.6.7.9 Effects of Nonuniform Support Settlements
793 (1)
10.6.7.10 Effects of Temperature
793 (2)
10.6.7.11 Summary of Effects
795 (1)
10.6.7.12 Buckling Analysis
795 (1)
10.6.7.13 Vibration Analysis
795 (2)
10.6.7.14 Determination of Cable Forces in the Completed Bridge
797 (1)
10.6.7.15 Determination of the Elevations of the Top Face of the Bottom Formwork for Main Girder Cast Segments
797 (4)
10.6.8 Capacity Verifications
801 (18)
10.6.8.1 Capacity Check of Main Girder
801 (13)
10.6.8.2 Capacity Check of Pylon
814 (1)
10.6.8.3 Stability Check
814 (1)
10.6.8.4 Capacity Check of Cables
815 (2)
References
817 (2)
Chapter 11 Design of Substructure 819 (54)
11.1 Introduction
819 (1)
11.2 Types of Piers
819 (7)
11.2.1 Typical Pier Shapes
819 (7)
11.2.1.1 Solid Piers
819 (1)
11.2.1.2 Box Piers
819 (4)
11.2.1.3 AASHTO-PCI-ASBI Standard Segmental Box Piers and Details
823 (1)
11.2.1.4 Transverse Layouts
823 (1)
11.2.1.5 Connections between Super-Structures and Piers
824 (2)
11.3 Abutments
826 (5)
11.3.1 U-Shape Abutments
829 (1)
11.3.2 Mini-Abutments
830 (1)
11.3.3 End Bent and MSE Wall Combined Abutments
830 (1)
11.4 Bridge Bearings
831 (16)
11.4.1 Introduction
831 (3)
11.4.2 Elastomeric Bearings
834 (7)
11.4.2.1 General
834 (1)
11.4.2.2 Design Requirements for Steel Laminated Elastomeric Bearings
834 (7)
11.4.3 Disc Bearings
841 (1)
11.4.4 Pot Bearings
841 (4)
11.4.5 Anchor Details for Pot and Disc Bearings
845 (2)
11.5 Analysis and Capacity Verification of Substructures
847 (6)
11.5.1 Pier Analysis
847 (6)
11.5.1.1 Loads on Piers
847 (1)
11.5.1.2 Analysis of Flexible Piers with and without Neoprene Bearings
848 (5)
11.5.2 Capacity Verification of Piers
853 (1)
11.6 Expansion Joints
853 (4)
11.6.1 General
853 (1)
11.6.2 Design Criteria
853 (1)
11.6.3 Selection and Installation Details of Expansion Joints Used in Segmental Bridges
854 (3)
11.6.3.1 Typical Expansion Joints
854 (1)
11.6.3.2 Strip Seal Expansion Joints
854 (1)
11.6.3.3 Modular Expansion Joints
854 (3)
11.6.3.4 Finger Joints
857 (1)
11.7 Design Example VII: Pier
857 (14)
11.7.1 Design Information
857 (1)
11.7.2 Pier Geometry
857 (2)
11.7.3 Pier Analysis
859 (6)
11.7.3.1 Linear Analysis of Entire Bridge Structure
859 (2)
11.7.3.2 Nonlinear Analysis of the Pier
861 (4)
11.7.4 Preliminary Reinforcement Layout
865 (1)
11.7.4.1 Minimum and Maximum Bar Spacing Check
866 (1)
11.7.4.2 Minimum and Maximum Reinforcement Check
866 (1)
11.7.5 Pier Capacity Verifications
866 (3)
11.7.5.1 Strength V Capacity Check
866 (2)
11.7.5.2 Service I Capacity Check
868 (1)
11.7.6 Cap Reinforcement Layout and Capacity Verification
869 (2)
11.7.6.1 Development of Strut-and-Tie Model
869 (1)
11.7.6.2 Capacity Check of the Struts and Ties for Strength V Limit State
870 (1)
11.7.6.3 Crack Check for Service I Limit State
871 (1)
11.7.7 Footing Capacity Check
871 (1)
References
871 (2)
Chapter 12 Segmental Bridge Construction 873 (38)
12.1 Introduction
873 (1)
12.2 Segment Fabrications
873 (6)
12.2.1 Segment Fabrication for Cast-in-Place Cantilever Construction
873 (2)
12.2.1.1 Typical Form Traveler
873 (1)
12.2.1.2 Typical Procedure for Segment Fabrication
874 (1)
12.2.1.3 Fabrication of the Pier Segment
875 (1)
12.2.2 Fabrication of Precast Segments
875 (4)
12.2.2.1 Long-Line Casting Method
876 (1)
12.2.2.2 Short-Line Casting Method
877 (2)
12.3 Geometry Control
879 (17)
12.3.1 Introduction
879 (2)
12.3.2 Determination of Vertical Casting Angles for Match-Cast Segments
881 (3)
12.3.3 Control Points of Segments and Coordinate Systems
884 (13)
12.3.3.1 Control Points of Segment
884 (1)
12.3.3.2 Coordinate Systems for Geometric Control
885 (1)
12.3.3.3 Coordinate Transformation
886 (1)
12.3.3.4 Procedure for Determining the Cast Geometry
887 (2)
12.3.3.5 Geometric Control Procedure
889 (7)
12.4 Construction Tolerances
896 (1)
12.5 Handling Segments
897 (1)
12.5.1 Lifting of Segments
897 (1)
12.5.2 Storing of Segments
898 (1)
12.6 Details during Erection
898 (4)
12.6.1 Temporary Post-Tensioning
898 (2)
12.6.2 Stabilizing Methods
900 (1)
12.6.2.1 Longitudinal Direction
900 (1)
12.6.2.2 Transverse Direction
900 (1)
12.6.3 Midspan Closure Construction in Balanced Cantilever Segmental Bridges
901 (1)
12.7 Post-Tensioning Tendon Installation and Grouting
902 (7)
12.7.1 General
902 (1)
12.7.2 Duct and Tendon Installation
903 (1)
12.7.2.1 Duct Installation
903 (1)
12.7.2.2 Tendon Installation
903 (1)
12.7.3 Grouting
904 (4)
12.7.3.1 Introduction
904 (1)
12.7.3.2 Grouting Procedures for Precast Segmental Span-by-Span Bridges
905 (1)
12.7.3.3 Grouting Procedure for Precast Segmental Balanced Cantilever Bridges
906 (1)
12.7.3.4 Grouting Procedure for Spliced I-Girder Bridges
907 (1)
12.7.4 Flexible Filler
908 (1)
References
909 (2)
Appendix A: AASHTO-PCI-ASBI Segmental Box Girder Standards for Span-by-Span and Balanced Cantilever Construction 911(30)
Appendix B: Typical Prestressing and Stay Cable Systems Provided by Freyssinet and TENSA 941
Index 97
Dongzhou Huang, Ph.D., P.E., is Chief Engineer of Atkins North America and President of American Bridge Engineering Consultants, and has been a professor and visiting professor at Tongji University, Fuzhou University, and Florida International University for more than 20 years. He has been engaged in bridge engineering for over 40 years and has published numerous papers and books on bridge design, dynamic and stability analysis, practical analysis methods, and capacity evaluations of different types of bridges, including box girder, curved girder, cable-stayed, truss, and arch bridges. He has been extensively involved in the design, analysis, and construction of different types of long span and complex bridges, including span-by-span constructed, precast and cast-in-place cantilever segmental bridges, cable-stayed bridges, and arch bridges. He is an editor/board member of Journal of Structural Engineering International, IABSE and former associate editor of Journal of Bridge Engineering, ASCE.

Bo Hu, Ph.D., P.E., P.Eng., is an associate technical director in the Edmonton office of COWI. He obtained his Ph.D. in civil engineering from the University of Delaware in 2006. He has been engaged in bridge engineering for 20 years with research and design experiences in various bridge types, seismic behaviors of bridge structures, seismic design methodology for bridge structures, and development of innovative structures. He is a professional engineer in the United States and Canada and has been playing leading technical and project roles in a variety of large bridge projects in North America, including segmental concrete girder bridges, extradosed concrete segmental bridges, and cable-stayed concrete segmental bridges.