Muutke küpsiste eelistusi

E-raamat: Condensed-Matter and Materials Physics: The Science of the World Around Us

  • Formaat: 284 pages
  • Ilmumisaeg: 21-Dec-2007
  • Kirjastus: National Academies Press
  • Keel: eng
  • ISBN-13: 9780309134095
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 71,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 284 pages
  • Ilmumisaeg: 21-Dec-2007
  • Kirjastus: National Academies Press
  • Keel: eng
  • ISBN-13: 9780309134095
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The development of transistors, the integrated circuit, liquid-crystal displays, and even DVD players can be traced back to fundamental research pioneered in the field of condensed-matter and materials physics (CMPP). The United States has been a leader in the field, but that status is now in jeopardy. Condensed-Matter and Materials Physics, part of the Physics 2010 decadal survey project, assesses the present state of the field in the United States, examines possible directions for the 21st century, offers a set of scientific challenges for American researchers to tackle, and makes recommendations for effective spending of federal funds. This book maintains that the field of CMPP is certain to be principle to both scientific and economic advances over the next decade and the lack of an achievable plan would leave the United States behind. This book's discussion of the intellectual and technological challenges of the coming decade centers around six grand challenges concerning energy demand, the physics of life, information technology, nanotechnology, complex phenomena, and behavior far from equilibrium. Policy makers, university administrators, industry research and development executives dependent upon developments in CMPP, and scientists working in the field will find this book of interest.
Summary 1(6)
Overview
7(23)
Six Scientific Challenges for the Next Decade
8(12)
How Do Complex Phenomena Emerge from Simple Ingredients?
8(2)
How Will the Energy Demands of Future Generations Be Met?
10(2)
What Is the Physics of Life?
12(2)
What Happens Far from Equilibrium and Why?
14(3)
What New Discoveries Await Us in the Nanoworld?
17(1)
How Will the Information Technology Revolution Be Extended?
18(2)
Societal and Scientific Impact of CMMP Research
20(3)
Industrial Research
23(1)
Structure and Level of the Current Research Effort
24(2)
Tools, Instrumentation, and Facilities for CMMP Research
26(2)
Concluding Comments
28(2)
How Do Complex Phenomena Emerge From Simple Ingredients?
30(23)
Emergent Phenomena: Beautiful and Useful
30(2)
Superconductivity: An Illustrative Example and a Frontier of Research
32(4)
Fermi Liquids and Non-Fermi Liquids
36(5)
Quantum Hall Systems and the Discovery of New Quantum States of Matter
41(4)
Critical Phenomena and Universality
45(2)
Emergence in Ultracold Atomic Gases
47(1)
Emergence in Classical Condensed-Matter Systems
48(3)
Realizing the Full Potential of Emergence
51(1)
Conclusions
52(1)
How Will the Energy Demands of Future Generations Be Met?
53(17)
Setting the Context
54(2)
Energy Conversion
56(6)
Solar Cells
56(1)
Hydrogen Generation by Photocatalysis
57(1)
Fuel Cells
58(1)
Thermoelectrics
59(1)
Biofuels
60(1)
Nuclear Energy Conversion
61(1)
Energy Storage
62(2)
Batteries
62(1)
Hydrogen Storage
63(1)
Supercapacitors
64(1)
End-Use Energy Efficiency
64(5)
Solid-State Lighting
65(2)
Smart Windows
67(1)
Other Energy Conservation Opportunities
68(1)
Conclusions
69(1)
What is the Physics of Life?
70(21)
Overview
70(1)
An Introductory Example: High Fidelity with Single Molecules
71(3)
Organizing Our Thoughts and Opportunities
74(1)
Noise Is Not Negligible
75(8)
Molecule Counting in Chemotaxis
75(3)
Noise in the Regulation of Gene Expression
78(4)
Signals and Noise in the Brain
82(1)
Fine-Tuning Versus Robustness
83(7)
Protein Folding and the Space of Sequences
84(1)
Ion Channels and the Computational Function of Neurons
85(2)
Adaptation
87(3)
Fulfilling the Promise
90(1)
What Happens Far from Equilibrium and Why?
91(20)
The Importance of Far-from-Equilibrium Phenomena
91(4)
Key Themes Defining the Scope of the Challenge
93(1)
What CMMP Brings to the Table
94(1)
How Do Systems Reach the Far-from-Equilibrium Regime and What Makes Far-from-Equilibrium Physics Difficult?
95(4)
Far-from-Equilibrium Materials
97(1)
Far-from-Equilibrium Processing and Assembly
98(1)
What Determines Behavior Far from Equilibrium?
99(11)
Systems with Hydrodynamic Equations of Motion
100(2)
Turbulence and Fracture
102(1)
Singularities
103(1)
Robustness as a Design Principle
104(2)
Predictability and Control: What Can We Learn from Fluctuations?
106(1)
Formal Theoretical Developments
107(1)
Getting (Un-)Stuck: Jammed States and Jamming Transitions
107(3)
The Next Decade
110(1)
What New Discoveries Await Us in the Nanoworld?
111(16)
Why Nano?
111(2)
Nanoscale Structures: How Do We Build Them?
113(5)
Patterning at the Nanoscale: Lithography and Self-Assembly
114(2)
Controlling Growth at the Nanoscale
116(1)
Molecular and Biological Building Blocks
116(2)
Studying Nanostructure Building Blocks: The Atomic Physics of Nanoscience
118(4)
Quantum Manipulation
119(1)
Controlling Light: Nano-Optics
120(1)
Probing Molecular Machines
121(1)
Combining Different Properties
122(1)
Assembling the Blocks: The Condensed-Matter Physics of Nanoscience
122(2)
Ordered Arrays
122(2)
Arbitrary Structures
124(1)
Small Probes and Big Ideas: Critical Needs for a Nano Future
124(3)
Better Eyes
125(1)
Improved Sensing
126(1)
A Greater Understanding
126(1)
How Will the Information Technology Revolution Be Extended?
127(17)
The Road Ahead
127(7)
New Devices for Mass Storage of Information
134(1)
New Solid-State Memory Devices
134(2)
New Devices for Processing Information
136(4)
Quantum Computing
140(1)
Conclusions
141(3)
The Impact of Condensed-Matter and Materials Physics Research
144(21)
Impact on Society
144(8)
Education
144(3)
The Economy
147(2)
Energy
149(2)
Medicine and Health Care
151(1)
Impact on Other Scientific Disciplines
152(11)
Atomic, Molecular, and Optical Physics
152(4)
Nuclear and High-Energy Physics
156(1)
Astronomy
157(2)
Chemistry
159(1)
Biology
160(2)
Information Technology and Computer Science
162(1)
Interdisciplinary Research in CMMP
163(1)
Recommendations
164(1)
Industrial Laboratories and Research in Condensed-Matter and Materials Physics
165(7)
History of Industrial Research Laboratories
165(2)
Filling the Gap: New Approaches to Long-Term Research
167(3)
Conclusions
170(1)
Recommendation
171(1)
Structure and Level of the Current Research Effort
172(21)
Federal Funding for CMMP Research
172(5)
Funding Success Rates
177(3)
Grant Sizes
180(1)
International Data
180(1)
Demographics of CMMP
180(7)
Women and Underrepresented Minorities in CMMP
183(3)
Doctoral Degrees in Physics by Citizenship
186(1)
Publication Trends
187(4)
Recommendations
191(2)
Tools, Instrumentation, and Facilities for Condensed-Matter and Materials Physics Research
193(46)
Tools and Instrumentation for CMMP Research
194(9)
Instrumentation in CMMP Research
195(3)
Computation in CMMP Research
198(5)
Centers and Facilities in CMMP Research
203(4)
Scientific User Facilities for CMMP Research
207(31)
Light Sources
208(8)
Neutron Sources
216(6)
Electron Microscopy
222(6)
High-Magnetic-Field Facilities
228(3)
Nanocenters and Materials Synthesis
231(4)
Large-Scale High-Performance Computing Facilities
235(3)
Conclusions
238(1)
CONCLUDING REMARKS
239(16)
APPENDIXES
Statement of Task
243(2)
Agendas of Committee Meetings
245(5)
Agenda and Participants at Facilities Workshop
250(5)
Biographies of Committee Members
255


Committee on CMMP 2010, Solid State Sciences Committee, National Research Council