Muutke küpsiste eelistusi

E-raamat: Constrained Markov Decision Processes

(INRIA, Valbonne, Cedex, France)
  • Formaat: 256 pages
  • Sari: Stochastic Modeling Series
  • Ilmumisaeg: 24-Dec-2021
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781351458238
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 227,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 256 pages
  • Sari: Stochastic Modeling Series
  • Ilmumisaeg: 24-Dec-2021
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781351458238
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a unified approach for the study of constrained Markov decision processes with a finite state space and unbounded costs. Unlike the single controller case considered in many other books, the author considers a single controller with several objectives, such as minimizing delays and loss, probabilities, and maximization of throughputs. It is desirable to design a controller that minimizes one cost objective, subject to inequality constraints on other cost objectives. This framework describes dynamic decision problems arising frequently in many engineering fields. A thorough overview of these applications is presented in the introduction. The book is then divided into three sections that build upon each other. The first part explains the theory for the finite state space. The author characterizes the set of achievable expected occupation measures as well as performance vectors, and identifies simple classes of policies among which optimal policies exist. This allows the reduction of the original dynamic into a linear program. A Lagranian approach is then used to derive the dual linear program using dynamic programming techniques. In the second part, these results are extended to the infinite state space and action spaces. The author provides two frameworks: the case where costs are bounded below and the contracting framework. The third part builds upon the results of the first two parts and examines asymptotical results of the convergence of both the value and the policies in the time horizon and in the discount factor. Finally, several state truncation algorithms that enable the approximation of the solution of the original control problem via finite linear programs are given.

Arvustused

"an outstanding addition to the MDPs literature and it complements".

tstanding addition to the MDPs literature and it complements".

Introduction
1(19)
Examples of constrained dynamic control problems
1(2)
On solution approaches for CMDPs with expected costs
3(2)
Other types of CMDPs
5(2)
Cost criteria and assumptions
7(1)
The convex analytical approach and occupation measures
8(2)
Linear Programming and Lagrangian approach for CMDPs
10(2)
About the methodology
12(5)
The structure of the book
17(2)
I Part One: Finite MDPs 19(38)
Markov decision processes
21(6)
The model
21(2)
Cost criteria and the constrained problem
23(1)
Some notation
24(1)
The dominance of Markov policies
25(2)
The discounted cost
27(10)
Occupation measure and the primal LP
27(3)
Dynamic programming and dual LP: the unconstrained case
30(2)
Constrained control: Lagrangian approach
32(1)
The dual LP
33(1)
Number of randomizations
34(3)
The expected average cost
37(8)
Occupation measure and the primal LP
37(4)
Equivalent Linear Program
41(1)
The Dual Program
42(1)
Number of randomizations
43(2)
Flow and service control in a single-server queue
45(12)
The model
45(2)
The Lagrangian
47(6)
The original constrained problem
53(1)
Structure of randomization and implementation issues
53(1)
On coordination between controllers
54(1)
Open questions
55(2)
II Part Two: Infinite MDPs 57(124)
MDPs with infinite state and action spaces
59(16)
The model
59(2)
Cost criteria
61(1)
Mixed policies and topologic structure*
62(1)
The dominance of Markov policies
63(2)
Aggregation of states*
65(3)
Extra randomization in the policies*
68(2)
Equivalent quasi-Markov model and quasi-Markov policies*
70(5)
The total cost: classification of MDPs
75(26)
Transient and Absorbing MDPs
75(2)
MDPs with uniform Lyapunov functions
77(1)
Equivalence of MDP with unbounded and bounded costs*
78(6)
Properties of MDPs with uniform Lyapunov functions*
84(5)
Properties for fixed initial distribution*
89(4)
Examples of uniform Lyapunov functions
93(3)
Contracting MDPs
96(5)
The total cost: occupation measures and the primal LP
101(16)
Occupation measure
101(3)
Continuity of occupation measures
104(6)
More properties of MDPs*
110(1)
Characterization of the sets of occupation measure
110(2)
Relation between cost and occupation measure
112(2)
Dominating classes of policies
114(1)
Equivalent Linear Program
115(1)
The dual program
116(1)
The total cost: Dynamic and Linear Programming
117(20)
Non-constrained control: Dynamic and Linear Programming
118(1)
Super-harmonic functions and Linear Programming
118(9)
Set of achievable costs
127(1)
Constrained control: Lagrangian approach
128(3)
The Dual LP
131(1)
State truncation
132(1)
A second LP approach for optimal mixed policies
133(1)
More on unbounded costs
134(3)
The discounted cost
137(6)
The equivalent total cost model
137(1)
Occupation measure and LP
138(1)
Non-negative immediate cost
138(1)
Weak contracting assumptions and Lyapunov functions
139(1)
Example: flow and service control
140(3)
The expected average cost
143(22)
Occupation measure
143(4)
Completeness properties of stationary policies
147(3)
Relation between cost and occupation measure
150(4)
Dominating classes of policies
154(3)
Equivalent Linear Program
157(1)
The Dual Program
158(1)
The contracting framework
158(2)
Other conditions for the uniform integrability
160(1)
The case of uniform Lyapunov conditions
161(4)
Expected average cost: Dynamic Programming and LP
165(16)
The non-constrained case: optimality inequality
165(4)
Non-constrained control: cost bounded below
169(2)
Dynamic programming and uniform Lyapunov function
171(2)
Superharmonic functions and linear programming
173(3)
Set of achievable costs
176(1)
Constrained control: Lagrangian approach
176(2)
The dual LP
178(1)
A second LP approach for optimal mixed policies
179(2)
III Part Three: Asymptotic methods and approximations 181(36)
Sensitivity analysis
183(10)
Introduction
183(3)
Approximation of the values
186(4)
Approximation and robustness of the policies
190(3)
Convergence of discounted constrained MDPs
193(6)
Convergence in the discount factor
193(1)
Convergence to the expected average cost
194(1)
The case of uniform Lyapunov function
195(4)
Convergence as the horizon tends to infinity
199(6)
The discounted cost
199(1)
The expected average cost: stationary policies
200(1)
The expected average cost: general policies
201(4)
State truncation and approximation
205(12)
The approximating sets of states
206(2)
Scheme I: the total cost
208(3)
Scheme II: the total cost
211(3)
Scheme III: the total cost
214(1)
The expected average cost
214(1)
Infinite MDPs: on the number of randomizations
215(2)
Appendix: Convergence of probability measures 217(4)
References 221(14)
List of Symbols and Notation 235(4)
Index 239


Altman, Eitan