Muutke küpsiste eelistusi

E-raamat: Continuous Time Processes for Finance: Switching, Self-exciting, Fractional and other Recent Dynamics

  • Formaat: PDF+DRM
  • Sari: Bocconi & Springer Series 12
  • Ilmumisaeg: 25-Aug-2022
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031063619
  • Formaat - PDF+DRM
  • Hind: 148,19 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Bocconi & Springer Series 12
  • Ilmumisaeg: 25-Aug-2022
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031063619

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book explores recent topics in quantitative finance with an emphasis on applications and calibration to time-series. This last aspect is often neglected in the existing mathematical finance literature while it is crucial for risk management. The first part of this book focuses on switching regime processes that allow to model economic cycles in financial markets. After a presentation of their mathematical features and applications to stocks and interest rates, the estimation with the Hamilton filter and Markov Chain Monte-Carlo algorithm (MCMC) is detailed. A second part focuses on self-excited processes for modeling the clustering of shocks in financial markets. These processes recently receive a lot of attention from researchers and we focus here on its econometric estimation and its simulation. A chapter is dedicated to estimation of stochastic volatility models. Two chapters are dedicated to the fractional Brownian motion and Gaussian fields. After a summary of their features, we present applications for stock and interest rate modeling. Two chapters focuses on sub-diffusions that allows to replicate illiquidity in financial markets. This book targets undergraduate students who have followed a first course of stochastic finance and practitioners as quantitative analyst or actuaries working in risk management.

Arvustused

Hainaut has written a book which in such panorama has a position of its own and which should be considered with great interest. the book should definitely be considered an excellent and warmly recommended read. It is likely that it will be soon become a reference for those interested in modern topics and for young researchers in particular. (Gianluca Cassese, zbMATH 1512.91001, 2023)

Preface.- Acknowledgements.- Notations.-
1. Switching Models: Properties
and Estimation.-
2. Estimation of Continuous Time Processes by Markov Chain
Monte Carlo.-
3. Particle Filtering and Estimation.-
4. Modeling of Spillover
Effects in Stock Markets.-
5. Non-Markov Models for Contagion and Spillover.-
6. Fractional Brownian Motion.-
7. Gaussian Fields for Asset Prices.-
8. Lévy
Interest Rate Models With a Long Memory.-
9. Affine Volterra Processes and
Rough Models.-
10. Sub-Diffusion for Illiquid Markets.- 11. A Fractional
Dupire Equation for Jump-Diffusions.- References.
Donatien Hainaut is professor of quantitative finance and actuarial sciences at UCLouvain where he manages the new Master program in Data Science, statistical orientation. Prior to this he held several positions as associate professor at Rennes School of Business and the ENSAE in Paris. He also has several field experiences having worked as Risk Officer, Quantitative Analyst and ALM Officer. He is a Qualified Actuary and holds a PhD in the area of Assets and Liability Management. His current research focuses on contagion mechanism in stochastic processes, fractional processes and their application in insurance and finance.