|
Part I Elements of Continuum Mechanics |
|
|
|
1 Vector, Tensors, and Related Matters |
|
|
3 | (118) |
|
|
3 | (5) |
|
|
8 | (3) |
|
1.3 Euclidean Vector Spaces |
|
|
11 | (7) |
|
1.4 Euclidean Point Spaces |
|
|
18 | (2) |
|
1.5 Second-Order Tensors: Fundamentals |
|
|
20 | (5) |
|
1.6 Examples of Tensors: Elementary Projections |
|
|
25 | (1) |
|
1.7 Basic Properties of Tensors |
|
|
26 | (6) |
|
1.8 Linear Mappings as Geometric Transformations |
|
|
32 | (3) |
|
1.9 Transformation Rules for a Change of Basis |
|
|
35 | (3) |
|
1.10 Higher Order Tensors |
|
|
38 | (2) |
|
1.11 A Special Property: Isotropy |
|
|
40 | (1) |
|
1.12 Pseudo-scalars/vectors/tensors |
|
|
41 | (2) |
|
1.13 Other Uses of Vector and Tensor Products |
|
|
43 | (7) |
|
1.14 Fourth-Order Tensors |
|
|
50 | (6) |
|
|
56 | (3) |
|
1.16 On the Relationship Between Skw and |
|
|
59 | (2) |
|
|
61 | (6) |
|
1.17.1 Cylindrical Polar Coordinates |
|
|
63 | (2) |
|
1.17.2 Spherical Polar Coordinates |
|
|
65 | (1) |
|
1.17.3 Physical Components for Vectors and Tensors |
|
|
65 | (2) |
|
|
67 | (4) |
|
|
71 | (5) |
|
1.20 Some Important Theorems |
|
|
76 | (5) |
|
|
81 | (1) |
|
1.22 Vector and Tensor Calculus |
|
|
82 | (23) |
|
1.22.1 Differential Calculus in Finite-Dimensional Euclidean Vector Spaces |
|
|
85 | (6) |
|
1.22.2 Differential Operators: DIV, GRAD, CURL |
|
|
91 | (5) |
|
1.22.3 Vector and Tensor Identities |
|
|
96 | (3) |
|
1.22.4 Non-Cartesian Coordinates |
|
|
99 | (3) |
|
1.22.5 Some Important Integral Theorems |
|
|
102 | (3) |
|
1.23 Differentiation of Tensor Functions |
|
|
105 | (7) |
|
|
112 | (9) |
|
|
120 | (1) |
|
|
121 | (40) |
|
2.1 Defoimable Bodies: Definition and Generalities |
|
|
121 | (2) |
|
2.2 Examples of Deformations/Motions |
|
|
123 | (4) |
|
2.3 Velocity and Acceleration Fields. Material Time Derivatives |
|
|
127 | (5) |
|
2.4 The Deformation Gradient |
|
|
132 | (4) |
|
2.5 Changes in Area and Volume |
|
|
136 | (3) |
|
|
139 | (4) |
|
2.7 Examples of Particular Strain Tensors |
|
|
143 | (4) |
|
2.8 The Interpretation of the Polar Decomposition Theorem |
|
|
147 | (1) |
|
2.9 The Spatial Gradient of Velocity |
|
|
147 | (4) |
|
|
151 | (3) |
|
|
154 | (7) |
|
|
159 | (2) |
|
|
161 | (36) |
|
3.1 The Principle of Mass Conservation |
|
|
162 | (4) |
|
3.2 Body and Surface Forces |
|
|
166 | (4) |
|
|
170 | (1) |
|
|
171 | (2) |
|
3.5 Some Technical Proofs |
|
|
173 | (5) |
|
3.6 Further Properties of the Cauchy Stress Tensor |
|
|
178 | (6) |
|
3.7 Particular States of Stress |
|
|
184 | (2) |
|
3.8 The Piola--Kirchhoff Stress Tensors |
|
|
186 | (3) |
|
|
189 | (8) |
|
|
196 | (1) |
|
4 Constitutive Relationships |
|
|
197 | (46) |
|
4.1 The Principle of Material Frame-Indifference |
|
|
198 | (8) |
|
4.2 Other Important Constitutive Principles |
|
|
206 | (3) |
|
4.3 Cauchy-Elastic Materials |
|
|
209 | (1) |
|
|
210 | (7) |
|
|
217 | (6) |
|
4.6 Constitutive Representations for Isotropic Hyperelastic Solids |
|
|
223 | (4) |
|
|
227 | (4) |
|
4.8 Particular Forms of the Strain-Energy Function |
|
|
231 | (1) |
|
|
232 | (5) |
|
|
237 | (6) |
|
|
240 | (3) |
|
Part II Topics in Linear Elasticity |
|
|
|
5 Linear Elasticity: General Considerations and Boundary-Value Problems |
|
|
243 | (38) |
|
|
243 | (1) |
|
5.2 Linearised Kinematics |
|
|
244 | (1) |
|
5.3 Distortional and Spherical Strain |
|
|
245 | (1) |
|
5.4 Linearised Constitutive Behaviour |
|
|
246 | (5) |
|
5.5 Linearised Field Equations |
|
|
251 | (4) |
|
5.6 Restrictions on the Elastic Constants |
|
|
255 | (3) |
|
5.7 The Navier--Lame Equations |
|
|
258 | (2) |
|
5.8 Principle of Superposition |
|
|
260 | (2) |
|
5.9 Saint-Venant's Principle |
|
|
262 | (1) |
|
|
263 | (8) |
|
5.11 Standard Simplifications |
|
|
271 | (4) |
|
|
272 | (1) |
|
|
273 | (1) |
|
5.11.3 Antiplane Strain/Stress |
|
|
274 | (1) |
|
|
275 | (6) |
|
|
280 | (1) |
|
6 Compatibility of the Infinitesimal Deformation Tensor |
|
|
281 | (38) |
|
|
281 | (2) |
|
6.2 Simply and Multiply Connected Domains |
|
|
283 | (2) |
|
6.3 The incompatibility' Operator |
|
|
285 | (3) |
|
|
288 | (1) |
|
6.5 Cesaro--Vol terra Formula |
|
|
289 | (7) |
|
6.6 Alternative Forms of the Compatibility Equation |
|
|
296 | (3) |
|
6.7 Beltrami--Michell Equations |
|
|
299 | (2) |
|
6.8 Explicit Calculations and Examples |
|
|
301 | (6) |
|
6.9 Weingarten-Volterra Dislocations |
|
|
307 | (4) |
|
|
311 | (8) |
|
|
318 | (1) |
|
|
319 | (52) |
|
|
319 | (2) |
|
7.2 Some Auxiliary Notation |
|
|
321 | (2) |
|
|
323 | (1) |
|
|
324 | (3) |
|
7.5 Non-circular Cylinder |
|
|
327 | (7) |
|
7.6 A Closer Look at the Torsional Rigidity |
|
|
334 | (5) |
|
7.7 Prandtl Stress Function |
|
|
339 | (3) |
|
7.8 Modified Stress Function |
|
|
342 | (3) |
|
7.9 Multiply Connected Domains |
|
|
345 | (2) |
|
|
347 | (3) |
|
7.11 Complex Variables Formulation |
|
|
350 | (4) |
|
|
354 | (11) |
|
|
365 | (6) |
|
|
369 | (2) |
|
8 Two-Dimensional Approximations |
|
|
371 | (48) |
|
|
371 | (2) |
|
|
373 | (2) |
|
|
375 | (1) |
|
8.4 Generalised Plane Stress |
|
|
376 | (3) |
|
8.5 The Airy Stress Function |
|
|
379 | (6) |
|
|
379 | (1) |
|
8.5.2 The Governing Equation for Φ |
|
|
379 | (2) |
|
8.5.3 Physical Interpretation of the Boundary Conditions |
|
|
381 | (3) |
|
8.5.4 The Displacement Field |
|
|
384 | (1) |
|
|
385 | (19) |
|
|
404 | (4) |
|
|
408 | (11) |
|
|
418 | (1) |
|
9 Special Two-Dimensional Problems: Unbounded Domains |
|
|
419 | (40) |
|
9.1 The Bi-harmonic Equation via Fourier Transforms |
|
|
419 | (10) |
|
9.2 Remarks on the Displacement Field |
|
|
429 | (1) |
|
|
429 | (5) |
|
9.4 A Modification of the Method |
|
|
434 | (3) |
|
9.5 The Elastic Quarter-Plane |
|
|
437 | (5) |
|
9.6 Displacement Boundary-Value Problems |
|
|
442 | (10) |
|
9.6.1 The Papkovitch--Neuber Representation |
|
|
443 | (3) |
|
9.6.2 The Stress Tensor in Terms of Ψ and B |
|
|
446 | (1) |
|
9.6.3 Particular Case: Plane Elasticity |
|
|
447 | (5) |
|
|
452 | (7) |
|
|
458 | (1) |
Appendix A Vector and Tensor Identities |
|
459 | (2) |
Appendix B Cylindrical and Spherical Coordinates |
|
461 | (6) |
Appendix C Geometry of Areas |
|
467 | (8) |
Appendix D Fourier Transforms |
|
475 | (16) |
Appendix E The Bi-harmonic Equation |
|
491 | (22) |
References |
|
513 | (2) |
Index |
|
515 | |