Muutke küpsiste eelistusi

E-raamat: Continuum Thermodynamics - Part Ii: Applications And Examples

(Technical Univ Of Berlin, Germany & Rose School Pavia, Italy), (Technical Univ Of Berlin, Germany)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 59,67 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This second part of Continuum Thermodynamics is designed to match almost one-to-one the chapters of Part I. This is done so that the reader studying thermodynamics will have a deepened understanding of the subjects covered in Part I. The aims of the book are in particular: the illustration of basic features of some simple thermodynamical models such as ideal and viscous fluids, non-Newtonian fluids, nonlinear solids, interactions with electromagnetic fields, and diffusive porous materials. A further aim is the illustration of the above subjects by examples and simple solutions of initial and boundary problems as well as simple exercises to develop skills in the construction of interdisciplinary macroscopic models.
Introduction 1(6)
2 Geometry of deformations of solids
7(16)
2.1 Summary: Geometry
7(4)
2.1.1 Configurations
7(1)
2.1.2 Deformation gradient
7(1)
2.1.3 Measures of deformation
8(1)
2.1.4 Polar decomposition
9(2)
2.1.5 Homogeneous deformations
11(1)
2.2 Universal solutions
11(4)
2.2.1 Families of universal solutions and corresponding geometric quantities
12(1)
2.2.1.1 Family 0: Homogeneous plane deformations
12(1)
2.2.1.2 Family 1: Deformation of a rectangular block
13(1)
2.2.1.3 Family 2: Sector of a circular-cylindrical tube
13(1)
2.2.1.4 Family 3: Deformation of an annular wedge
14(1)
2.2.1.5 Family 4: Inflation or eversion of a sector of a spherical shell
14(1)
2.2.1.6 Family 5: Deformation of a circular cylinder
15(1)
2.3 A few examples of universal deformations
15(8)
2.3.1 Isochoric extension
15(3)
2.3.2 Simple shear
18(3)
2.3.3 Pure torsion of a circular cylinder
21(2)
3 Kinematics of continua in different descriptions
23(10)
3.1 Summary: Kinematics of one-component media
23(5)
3.2 Two-component materials with the skeleton as reference
28(5)
3.2.1 Example clarifying the Lagrangian description of relative motion
28(5)
4 Balance equations
33(6)
5 Some solutions for fluids and solids
39(52)
5.1 Preliminaries
39(1)
5.2 D'Alembert paradox
39(2)
5.3 Fluids
41(30)
5.3.1 Ideal fluids
41(6)
5.3.2 Viscous fluids
47(1)
5.3.2.1 Navier-Stokes equation, uniqueness of solutions
47(8)
5.3.2.2 Lamellar flows
55(1)
5.3.2.3 Creeping flows
56(2)
5.3.2.4 Boundary layers
58(5)
5.3.3 Maxwell and N-th grade (Rivlin-Ericksen) fluids; viscometric flows
63(1)
5.3.3.1 Preliminaries
63(2)
5.3.3.2 Viscometric flows
65(6)
5.4 Nonlinear elastic solids
71(8)
5.4.1 Rubber-like materials
71(3)
5.4.1.1 Homogeneous deformations
74(4)
5.4.1.2 Heterogeneous deformations
78(1)
5.5 Viscoelastic solids
79(12)
5.5.1 Differential constitutive relations
83(2)
5.5.2 Steady state processes and elastic-viscoelastic correspondence principle
85(6)
6 Stability
91(24)
6.1 Preliminaries
91(2)
6.2 Stability of the torsional Couette flow
93(4)
6.3 Thermal instability of a layer of fluid heated from below -- Rayleigh-Benard problem
97(5)
6.4 Stability of a nonlinear elastic strip
102(4)
6.5 Stability of the thermodynamical equilibrium of second-grade fluids
106(9)
7 Thermodynamical problems
115(34)
7.1 Some heat conduction problems
115(13)
7.1.1 Steady temperature
115(1)
7.1.1.1 Heat flow in a rectangular parallelepiped
116(2)
7.1.1.2 Radial heat flow in an infinite circular cylinder
118(2)
7.1.1.3 Radial heat flow in a sphere
120(2)
7.1.2 Variable temperature
122(1)
7.1.2.1 Cartesian coordinates
122(2)
7.1.2.2 Cylindrical coordinates
124(2)
7.1.2.3 Spherical polar coordinates
126(2)
7.2 Heat conduction in anisotropic solids
128(6)
7.2.1 Conduction in a thin crystal plate
131(3)
7.3 Thermal boundary layers
134(5)
7.4 Composite beams with embedded shape memory alloy
139(10)
7.4.1 Constitutive relations for a shape memory alloy
140(3)
7.4.2 Bending of a SMA composite beam
143(2)
7.4.3 Numerical examples
145(4)
8 Extended thermodynamics of Jou--Casas-Vazquez--Lebon
149(18)
8.1 Summary of Extended Irreversible Thermodynamics (EIT)
150(7)
8.1.1 The generalized Gibbs equation
150(2)
8.1.2 The generalized entropy flux and entropy production
152(2)
8.1.3 Evolution equations of the fluxes
154(1)
8.1.4 Non-equilibrium equations of state and convexity requirements
155(2)
8.2 Microscopic foundations
157(8)
8.2.1 Kinetic theory of gases
157(1)
8.2.1.1 Basic concepts
157(4)
8.2.2 Fluctuation theory
161(1)
8.2.2.1 Second moments of equilibrium fluctuations
161(2)
8.2.2.2 Ideal gases
163(2)
8.3 Final comments
165(2)
9 Dislocations
167(12)
9.1 Introduction
167(4)
9.2 Continuum with dislocations
171(4)
9.3 On plasticity of metals
175(2)
9.4 Dislocations in geophysics
177(2)
10 Acoustic waves
179(44)
10.1 Preliminaries
179(3)
10.2 Propagation of acoustic waves in nonlinear materials with memory
182(2)
10.3 Bulk waves in nonlinear elasticity
184(6)
10.3.1 Modicum of the wave front description
184(3)
10.3.2 An approximate solution in the vicinity of the front
187(3)
10.4 Water waves and surface waves in linear solids
190(29)
10.4.1 Introduction
190(1)
10.4.2 Water waves in an ideal incompressible fluid model
191(6)
10.4.3 Surface waves in linear elastic solids
197(1)
10.4.3.1 Plane boundaries of linear elastic homogeneous materials
198(7)
10.4.3.2 Rayleigh waves on cylindrical boundaries
205(3)
10.4.4 Waves in a layer of an ideal fluid and Love waves on plane boundaries
208(1)
10.4.4.1 Layer of a compressible fluid on a semiinfinite rigid body
208(1)
10.4.4.2 Love waves on plane boundaries
209(3)
10.4.5 Rayleigh waves in a layer of elastic material
212(2)
10.4.6 Stoneley waves
214(1)
10.4.6.1 Interface of two semiinfinite elastic solids
214(3)
10.4.6.2 Semiinfinite elastic solid and semiinfinite ideal fluid
217(2)
10.4.6.3 Semiinfinite elastic solid and a layer of an ideal fluid
219(1)
10.5 A few remarks on leaky waves
219(1)
10.6 Bulk and surface waves in viscoelastic solids
220(3)
11 Interactions of ponderable bodies with electromagnetic fields
223(50)
11.1 Preliminaries
223(2)
11.2 Primer of Maxwell theory of electromagnetism
225(12)
11.2.1 Governing equations
225(9)
11.2.2 Lorentz invariance of the Maxwell equations
234(3)
11.3 On thermodynamics of coupled fields
237(2)
11.4 Magnetohydrodynamics of plasmas
239(15)
11.4.1 Phenomenology
239(2)
11.4.2 Characteristic parameters
241(5)
11.4.3 MHD-model derived from the theory of miscible mixtures
246(4)
11.4.4 Two-component model
250(4)
11.5 Magnetohydrodynamics of a single component fluid
254(13)
11.5.1 Dimensionless notation, approximations
254(9)
11.5.2 Some steady state flows
263(1)
11.5.2.1 Poiseuille-Hartmann flow
264(2)
11.5.2.2 Couette flow
266(1)
11.6 A few remarks on the stability of plasmas
267(6)
11.6.1 Linear stability analysis of the ideal plasma model
267(3)
11.6.2 A few particular cases of instabilities
270(3)
12 Mechanics of porous materials
273(40)
12.1 Summary of two-component models
273(6)
12.1.1 Immiscible mixtures
273(1)
12.1.2 Lagrangian description of multi-component porous media
274(3)
12.1.3 Eulerian description of multi-component porous media
277(2)
12.2 Two-component models with constitutive relations for the porosity
279(11)
12.2.1 Fields and field equations
280(3)
12.2.2 Thermodynamic admissibility
283(1)
12.2.2.1 Second law of thermodynamics
283(1)
12.2.2.2 C(1)-models
284(2)
12.2.2.3 C(2)-models
286(4)
12.3 Double- and multi-porosity models
290(13)
12.3.1 Fissured rocks -- example of a model with double porosity
290(1)
12.3.1.1 Basic physical concepts
291(1)
12.3.1.2 Equation of motion of a uniform liquid in fissured rocks
292(2)
12.3.1.3 Homogeneous liquid in a medium with double porosity
294(1)
12.3.1.4 Non-steady-state flow of liquid in a gallery
295(4)
12.3.2 Multi-porosity models in bioengineering - swelling media
299(1)
12.3.2.1 Cardiovascular disease
299(1)
12.3.2.2 Swelling
300(3)
12.4 Biomechanics of soft tissues
303(10)
12.4.1 Structure of soft tissues -- collagen and elastin
304(1)
12.4.2 General mechanical characteristic of soft tissues
305(1)
12.4.3 Model
306(2)
12.4.4 Example: A model for the artery
308(3)
12.4.5 Material parameters, numerical analysis and results
311(2)
13 Thermodynamics of porous materials with the porosity balance
313(60)
13.1 Summary: Balance equation of porosity and associated models
313(5)
13.1.1 Balance equation of porosity
313(1)
13.1.2 Full and simplified models with the balance equation of porosity
314(4)
13.2 Freezing and thawing
318(9)
13.2.1 Introduction
318(1)
13.2.2 Modeling of the diffusion range (PE-range) without freezing
319(1)
13.2.2.1 Specification of the material parameters
320(3)
13.2.3 Governing equations for material damaged by freezing (F-range)
323(3)
13.2.4 Iterative procedure
326(1)
13.2.5 Some remarks
327(1)
13.3 Linear stability of a ID flow under transversal disturbance with adsorption
327(12)
13.3.1 Introduction
327(2)
13.3.2 Adsorption/diffusion model
329(3)
13.3.3 Regular perturbation
332(3)
13.3.4 Wave ansatz for the disturbance
335(1)
13.3.5 Numerical investigation
336(1)
13.3.6 Properties of some other disturbances of the base flow
337(2)
13.3.7 Some remarks
339(1)
13.4 Wave propagation in porous media with anisotropic permeability
339(19)
13.4.1 Anisotropy of porous materials
339(1)
13.4.1.1 Anisotropy of the stress-strain relations
340(1)
13.4.1.2 Anisotropy of the permeability
340(2)
13.4.2 Governing equations accounting for anisotropic permeability
342(1)
13.4.3 Monochromatic waves
343(1)
13.4.4 Decoupled transversal wave
344(3)
13.4.5 Coupled waves
347(6)
13.4.6 Shear polarization
353(4)
13.4.7 Some remarks
357(1)
13.5 Wave propagation in three-component porous media
358(15)
13.5.1 Introduction
358(1)
13.5.2 Linear model
358(2)
13.5.3 Material parameters
360(2)
13.5.4 General propagation condition of monochromatic waves
362(1)
13.5.4.1 Transversal wave
363(1)
13.5.4.2 Longitudinal waves
364(1)
13.5.5 Numerical analysis of the wave propagation
365(1)
13.5.5.1 Discussion of numerical results
366(4)
13.5.6 Comparison with suspensions and experiments
370(1)
13.5.7 Some remarks
370(3)
Appendices
373(50)
A Basic notions
374(27)
A.1 Mathematical basics shown on the example of polar decomposition
374(7)
A.2 Curvilinear coordinate systems
381(1)
A.2.1 General considerations
381(5)
A.2.2 Cylindrical coordinates
386(2)
A.2.3 Spherical coordinates
388(1)
A.2.4 Ellipsoidal coordinates
389(1)
A.2.4.1 Confocal ellipsoidal coordinates
389(2)
A.2.4.2 Elliptic cylindrical coordinates
391(1)
A.2.5 Paraboloidal coordinates
392(1)
A.2.5.1 Confocal paraboloidal coordinates
392(2)
A.2.5.2 Parabolic coordinates
394(1)
A.2.5.3 Parabolic cylindrical coordinates
394(1)
A.2.6 Bipolar coordinates
395(2)
A.2.7 Toroidal coordinates
397(2)
A.2.8 Non-orthogonal coordinates
399(2)
B Integral transforms
401(4)
B.1 Fourier transforms
401(1)
B.2 Laplace transforms
402(3)
C Green functions
405(13)
C.1 Purpose
405(1)
C.2 Statics of isotropic elastic materials
405(3)
C.3 Dynamical Green function for isotropic elastic materials
408(4)
C.4 Some fundamental solutions for poroelastic and thermoelastic materials
412(6)
D Bessel functions and Bessel equation
418(2)
E Basic physical units
420(3)
Bibliography 423(30)
Index of Researchers 453(4)
Subject Index 457