Muutke küpsiste eelistusi

E-raamat: Control and Boundary Analysis

Edited by (Pole Universitaire Leonard de Vinci, Paris, France)
  • Formaat - PDF+DRM
  • Hind: 325,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume comprises selected papers from the 21st Conference on System Modeling and Optimization in Sophia Antipolis, France. It covers over three decades of studies involving partial differential systems and equations. Topics include: the modeling of continuous mechanics involving fixed boundary, control theory, shape optimization and moving boundaries, and topological shape optimization. This edition discusses all developments that lead to current moving boundary analysis and the stochastic approach.
Operator-Splitting Methods and Applications to the Direct Numerical Simulation of Particulate Flow and to the Solution of the Elliptic Monge-Ampere Equation
1(28)
Edward J. Dean
Roland Glowinski
Tsorng-Whay Pan
Operator-Splitting Schemes for the Time-Discretization of Initial Value Problems
2(4)
Operator-Splitting Methods for the Direct Numerical Simulation of Particulate Flow
6(8)
An Operator-Splitting Method for the Elliptic Monge-Ampere Equations in Two-Dimension
14(15)
Dynamical Shape Sensitivity
29(8)
Marwan Moubachir
Jean-Paul Zolesio
Introduction
30(1)
Mechanical Problem
30(1)
Inverse Problem
31(2)
Dynamical Shape Sensitivity of the Fluid
33(3)
Conclusion
36(1)
Optimal Control of a Structural Acoustic Model with Flexible Curved Walls
37(16)
John Cagnol
Catherine Lebiedzik
Introduction
37(1)
Background and Literature
38(1)
Statement of Main Results
39(2)
Intrinsic Geometry
41(1)
The Unforced, Conservative Shell Model
42(3)
Structurally Damped, Forced Shell Wall of an Acoustic Chamber
45(2)
Optimal Control Problem
47(1)
Proof of Lemma 3
48(5)
Nonlinear Wave Equations with Degenerate Damping and Source Terms
53(10)
Viorel Barbu
Irena Lasiecka
Mohammad A. Rammaha
Definitions and Main Results
55(3)
Outline of the Proof of Theorem 3
58(5)
Numerical Modeling of Phase Change Problems
63(10)
Andre Fortin
Youssef Belhamadia
Stefan Problem and Semi-Phase-Field Formulation
64(1)
Finite Element Discretization
65(1)
Adaptive Strategy
65(1)
Numerical Results
66(1)
Conclusions
67(6)
Shape Optimization of Free Air-Porous Media Transmission Coefficient
73(12)
Arian Novruzi
Computation of the Porous Shape
76(5)
Optimal Porous Shape Domain
81(4)
The Uniform Fat Segment and Uniform Cusp Properties in Shape Optimization
85(12)
Michel C. Delfour
Nicolas Doyon
Jean-Paul Zolesio
Preliminaries: Topologies on Families of Sets
86(1)
The New Uniform Fat Segment Property
87(4)
Equivalence of the Uniform Cusp and Fat Segment Properties
91(6)
Topology Optimization for Unilateral Problems
97(10)
Jan Sokolowski
Antoni Zochowski
Transformations of the Energy Functional for the Laplace Equation
98(4)
Signorini Problem
102(5)
Second Order Lagrange Multiplier Approximation for Constrained Shape Optimization Problems
107(12)
Karsten Eppler
Helmut Harbrecht
Shape Optimization
108(4)
Optimization of Constrained Problems
112(2)
Numerical Results
114(5)
Mathematical Models of ``Active'' Obstacles in Acoustic Scattering
119(12)
Lorella Fatone
Maria Cristina Recchioni
Francesco Zirilli
The Mathematical Models of the Masking and Ghost Obstacle Problems
122(3)
The Optimality Conditions for the Ghost Obstacle Problem and Some Numerical Experience
125(6)
Local Null Controllability in a State Constrained Thermoelastic Contact Problem
131(14)
Irina F. Sivergina
Michael P. Polis
Control of the Linear System
135(1)
Nonlinear Case: Application of a Fixed Point Theorem
136(7)
The State Constrained Null Control Problem
143(1)
Conclusion
143(2)
On Sensitivity of Optimal Solutions to Control Problems for Hyperbolic Hemivariational Inequalities
145(12)
Zdzislaw Denkowski
Stanislaw Migorski
Class of Problems
146(1)
Preliminaries
147(4)
Sensitivity of Solution Sets for Second Order HVIs
151(2)
Complementary Γ-convergence of Cost Functionals
153(4)
Evolution Hemivariational Inequality with Hysteresis and Optimal Control Problem
157(12)
Leszek Gasinski
Preliminaries
158(3)
Hemivariational Inequality with Hysteresis
161(2)
Estimates on the Solutions of (HVI)
163(1)
Optimal Control Problem
164(5)
On the Modeling and Control of Delamination Processes
169(20)
Michal Kocvara
Jiri V. Outrata
Introduction
169(2)
Delamination Process
171(6)
Optimality Conditions
177(5)
Optimization of Delamination Processes
182(3)
Conclusion
185(4)
On a Spectral Variational Problem Arising in the Study of Earthquakes
189(12)
Vicentiu Radulescu
Main Results and Physical Motivation
190(4)
Proofs
194(7)
Nodal Control of Conservation Laws on Networks
201(16)
Martin Gugat
Notation
202(2)
The Linearized Problem
204(1)
Existence of Solutions
205(1)
Directional Differentiability
206(1)
Evaluation of Directional Derivatives
206(5)
Example
211(3)
Conclusion
214(3)
Invariance of Closed Sets under Stochastic Control Systems
217(14)
Giuseppe Da Prato
Helene Frankowska
Preliminaries
219(1)
Necessary and Sufficient Conditions for the Invariance
220(4)
Invariance of Stochastic Control Systems
224(7)
Uniform Stabilization of an Anisotropic System of Thermoelasticity
231(12)
Mary Ann Horn
Statement of the Problem
232(3)
Proof of Theorem 3: Uniform Stabilization
235(6)
Discussion
241(2)
Semigroup Well-Posedness of a Multilayer Mead-Markus Plate with Shear Damping
243(14)
Scott W. Hansen
Multilayer Mead-Markus Model
244(4)
State Variable Formulation
248(3)
Semigroup Formulation of Homogeneous Problem
251(6)
Solution of Algebraic Riccati Equations Arising in Control of Partial Differential Equations
257(24)
Kirsten Morris
Carmeliza Navasca
Solution of Lyapunov Equation
260(3)
Benchmark Examples
263(5)
Euler-Bernoulli Beam
268(13)
Stabilization in Computing Saddle Points
281(12)
Jianxin Zhou
Xudong Yao
The Local Minimax Method
282(1)
Results on the Order of Saddle Points
283(3)
Reduce Instability by Using Symmetries
286(3)
Selected Numerical Examples
289(4)
Second Order Sufficient Conditions for Optimal Control Subject to First Order State Constraints
293(12)
Kazimierz Malanowski
Helmut Maurer
Sabine Pickenhain
Preliminaries
294(4)
Second Order Sufficient Conditions via Hamilton-Jacobi Inequality
298(2)
Checking Positive Definiteness with Riccati Equation
300(2)
Example
302(3)
Index 305


John Cagnol, Jean-Paul Zolesio