Muutke küpsiste eelistusi

E-raamat: Control of Interactive Robotic Interfaces: A Port-Hamiltonian Approach

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This monograph deals with energy based control of interactive robotic interfaces and the port-Hamiltonian framework is exploited both for modeling and controlling interactive robotic interfaces. Using the port-Hamiltonian framework, it is possible to identify the energetic properties that have to be controlled in order to achieve a desired interactive behavior and it is possible to build a port-Hamiltonian controller that properly regulates the robotic interface by shaping its energetic properties. Thanks to its generality, the port-Hamiltonian formalism allows to model and control also complex interactive robotic interfaces in a very natural way. In this book, a port-Hamiltonian approach for regulating the interaction between a robot and a local environment, a virtual environment (i.e. haptic interfaces) and a remote environment (i.e. bilateral telemanipulation systems) is developed.

This monograph deals with energy based control of interactive robotic interfaces. The port-Hamiltonian framework is exploited both for modeling and controlling interactive robotic interfaces. The book provides an energy oriented analysis and control synthesis of interactive robotic interfaces, from a single robot to multi-robot systems for interacting with real and virtual, possibly unstructured, environments.

Arvustused

From the reviews:









"This book deals with the important problem of modeling and controlling the interaction between two physical systemsfrom one side the robot and from the other side its environment. It is a suitable tool to formally model physical systems based on the energy concept and its relations. The authors introduce the energy-based control to the modeling and controlling phase of interactive robotics interfaces. The theoretical considerations and solutions are well interpreted with some practical examples." (Aleksander Michal Nawrat, Mathematical Reviews, Issue 2008 f)

1 Physical Modeling and Port-Hamiltonian Systems 1
1.1 Introduction
1
1.2 The Behavioral Paradigm for Modeling Dynamical Systems
2
1.2.1 Universe, Behavior and Behavioral Equations
2
1.2.2 Manifest and Latent Variables
3
1.2.3 Dynamical Systems
4
1.2.4 Inputs and Outputs
8
1.3 Physical Modeling
10
1.4 Implicit Port-Hamiltonian Systems
14
1.4.1 A Coordinate Based Representation
18
1.5 Geometric Scattering
25
1.6 Conclusions
30
2 Control of Port-Hamiltonian Systems 33
2.1 Introduction
33
2.2 Basic Concepts of Passivity Theory
34
2.2.1 Definitions and Properties
34
2.2.2 Output Feedback Stabilization of Passive Systems
38
2.2.3 Port-Hamiltonian Systems and Passivity
40
2.3 Energy Shaping of Port-Hamiltonian Systems
44
2.3.1 Stabilization by Energy Balancing
45
2.3.2 The Control as Interconnection Paradigm
51
2.3.3 Energy Shaping as Control by Interconnection
55
2.4 Interconnection and Damping Assignment Passivity Based Control
60
2.5 A Variable Structure Approach to Energy-Based Control
64
2.6 Conclusions
74
3 A Port-Hamiltonian Approach to the Control of Interaction 77
3.1 Introduction
77
3.2 Intrinsically Passive Control of Interaction
78
3.3 Intrinsically Passive Control of Robotic Systems
80
3.3.1 IPC for Anthropomorphic Robotic Arms
81
3.3.2 IPC for Grasping
86
3.4 Interaction with Virtual Environments: Haptic Interfaces
88
3.4.1 Sampled Port-Hamiltonian Systems
91
3.4.2 Energy Consistent Sampled Passivity
97
3.4.3 Passive Coupled Behavior
100
3.4.4 Dealing with Quantization Errors
101
3.5 Delayed Virtual Environments
104
3.5.1 The Effect of Delayed Output
104
3.5.2 Passive Discretization of Port-Hamiltonian Systems in Scattering Representation
108
3.6 Force Scaling in Port-Hamiltonian Based Haptic Interfaces
110
3.6.1 Power Scaling in Port-Hamiltonian Based Haptic Interfaces
112
3.6.2 Variable Scaling
114
3.7 Simulations
117
3.8 Conclusions
124
4 Port-Hamiltonian Based Bilateral Telemanipulation 127
4.1 Introduction
127
4.2 Port-Hamiltonian Based Bilateral Telemanipulation
129
4.2.1 An Energetic Analysis of a Bilateral Telemanipulation System
129
4.2.2 Passive Control of Interaction
131
4.2.3 Passive Communication Channel
132
4.2.4 The Intrinsically Passive Telemanipulation Scheme
137
4.3 Complex Telemanipulation Systems: Telegrasping
142
4.4 A Digital Scheme for Intrinsically Passive Telemanipulation
147
4.5 Improving Performances in Intrinsically Passive Digital Telemanipulation
155
4.6 Conclusions
162
5 Transparency in Port-Hamiltonian Based Telemanipulation 165
5.1 Introduction
165
5.2 A Model for the Contact Impedance
167
5.3 A Behavioral Framework for Evaluating Transparency
168
5.3.1 Analysis of the Port Behavior
168
5.3.2 Transparency in Telemanipulation
171
5.3.3 Transparent Telemanipulation as a Behavioral Control Problem
172
5.4 Transparency in Port-Hamiltonian Based Telemanipulation
173
5.4.1 Tuning the IPC
174
5.4.2 Transparency Analysis of a Scattering Based Packet Switching Communication Channel
175
5.4.3 Simulations
182
5.5 A Passivity Preserving Tuning of Port-Hamiltonian Systems
184
5.5.1 Parameters Associated to Energy Storage
187
5.5.2 Parameters Associated to Energy Dissipation and Interconnection
194
5.5.3 Simulations
194
5.6 A Scheme for Transparent Port-Hamiltonian Based Telemanipulation
196
5.7 Conclusions
198
A Mathematical Background 201
A.1 Manifolds and Vector Bundles
201
A.2 Tensors
206
A.3 Lie Groups and Rigid Motions
207
A.3.1 An Example: The Special Euclidean Group SE(3)
208
References 211
Index 231