Muutke küpsiste eelistusi

E-raamat: Control and Optimization of Distributed Generation Systems

  • Formaat: PDF+DRM
  • Sari: Power Systems
  • Ilmumisaeg: 14-May-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319169101
  • Formaat - PDF+DRM
  • Hind: 122,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Power Systems
  • Ilmumisaeg: 14-May-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319169101

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This text is an introduction to the use of control in distributed power generation. It shows the reader how reliable control can be achieved so as to realize the potential of small networks of diverse energy sources, either singly or in coordination, for meeting concerns of energy cost, energy security and environmental protection.
The book demonstrates how such microgrids, interconnecting groups of generating units and loads within a local area, can be an effective means of balancing electrical supply and demand. It takes advantage of the ability to connect and disconnect microgrids from the main body of the power grid to give flexibility in response to special events, planned or unplanned.
In order to capture the main opportunities for expanding the power grid and to present the plethora of associated open problems in control theory Control and Optimization of Distributed Generation Systems is organized to treat three key themes, namely:
  • system architecture and integration;
  • modelling and analysis; and
  • communications and control.
Each chapter makes use of examples and simulations and appropriate problems to help the reader study. Tools helpful to the reader in accessing the mathematical analysis presented within the main body of the book are given in an appendix.
Control and Optimization of Distributed Generation Systems will enable readers new to the field of distributed power generation and networked control, whether experienced academic migrating from another field or graduate student beginning a research career, to familiarize themselves with the important points of the control and regulation of microgrids. It will also be useful for practising power engineers wishing to keep abreast of changes in power grids necessitated by the diversification of generating methods.
Part I Modeling and Analysis
1 Introduction
3(44)
1.1 Distributed Generation
3(9)
1.1.1 Technology
3(2)
1.1.2 Value of Distributed Generation
5(1)
1.1.3 Applications and Issues
5(1)
1.1.4 Distributed Resources
6(1)
1.1.5 Distributed Capacity
7(1)
1.1.6 Factors of DG Growth
7(2)
1.1.7 Impacts on Transmission System Operation
9(1)
1.1.8 General Structure
10(2)
1.1.9 Integrating Distributed Energy Resources
12(1)
1.2 Supply—Demand in Electric Power Grid
12(4)
1.2.1 Understanding the Grid
12(1)
1.2.2 Reliability Concepts
13(1)
1.2.3 Electric Power Dynamic Demand
14(1)
1.2.4 The Need for Spinning Reserve
14(1)
1.2.5 Local Load Control
15(1)
1.2.6 Ancillary Services
15(1)
1.2.7 Implementation Issues
15(1)
1.3 Overview of Microgrids
16(10)
1.3.1 Control Tasks
18(1)
1.3.2 A Classification
19(2)
1.3.3 Control Objectives and Methods
21(2)
1.3.4 Microsource Control
23(2)
1.3.5 Control and Protection Requirements
25(1)
1.3.6 Reliable and Economical Operation
26(1)
1.4 Smart Grid
26(3)
1.4.1 Efficiency and Reliability
27(1)
1.4.2 Environmental Benefits
28(1)
1.4.3 Benefits to Consumers
28(1)
1.4.4 Security
29(1)
1.5 Technical Aspects
29(6)
1.5.1 Two-Way Communications
29(1)
1.5.2 Control and Monitoring Techniques
30(1)
1.5.3 Advanced Components
30(1)
1.5.4 Energy Storage
31(2)
1.5.5 Robust Energy Management
33(2)
1.6 DC Microgrids
35(4)
1.6.1 PV Sources Control
36(1)
1.6.2 Storage Control
37(1)
1.6.3 Grid Connection Control
38(1)
1.6.4 DC Load Control
38(1)
1.6.5 Power Balancing Principle
38(1)
1.7 Outline of the Book
39(2)
1.7.1 Methodology
39(1)
1.7.2
Chapter Organization
40(1)
References
41(6)
2 Distributed Generation Plants
47(42)
2.1 Combined Heat and Power Plants
47(8)
2.1.1 Introduction
47(1)
2.1.2 Microcogeneration Systems
48(1)
2.1.3 Internal Combustion Engines
49(1)
2.1.4 Stirling Engines
49(2)
2.1.5 Microturbines
51(2)
2.1.6 Fuel Cells
53(2)
2.2 Renewable Energy Generation
55(3)
2.2.1 Wind Power Plants
55(2)
2.2.2 Small-Scale Hydrogeneration
57(1)
2.3 Solar Photovoltaic Generation
58(4)
2.3.1 Technology Basics
59(1)
2.3.2 Grid-Connected Solar Systems
60(1)
2.3.3 Future Trends
61(1)
2.4 Small Wind Turbine Systems
62(8)
2.4.1 Types of Wind Turbine Systems
63(3)
2.4.2 Wind Turbine Fundamentals
66(1)
2.4.3 Control Loops
67(1)
2.4.4 Generator Side Control
68(1)
2.4.5 Boost Converter Control
68(2)
2.4.6 Rectifier Control
70(1)
2.5 Storage Technologies
70(4)
2.5.1 Classification of Electrical Energy Storage
71(1)
2.5.2 Mechanical Storage Systems
72(1)
2.5.3 Batteries
72(1)
2.5.4 Flywheels
73(1)
2.5.5 Superconducting Magnetic Energy Storage
73(1)
2.5.6 Supercapacitors
74(1)
2.6 Inverter Interfaces
74(4)
2.6.1 Voltage Source Inverters
74(2)
2.6.2 Inverter Realization for Microsources
76(1)
2.6.3 Inverter Realization
76(1)
2.6.4 Unbalanced AC Voltages
77(1)
2.7 Conclusions
78(1)
2.8 Suggested Problems
78(6)
References
84(5)
Part II Architectures and Integration
3 Control Methods for Microgrids
89(70)
3.1 Introduction
89(1)
3.2 Microgrids
90(14)
3.2.1 Definition and Applications
90(1)
3.2.2 Control Functions
91(1)
3.2.3 Components and Formation
92(2)
3.2.4 Overview of Modeling
94(9)
3.2.5 Modes of Operation
103(1)
3.3 Control Approaches
104(12)
3.3.1 Control of Grid-Connected Mode
104(1)
3.3.2 Power Flow Control by Current Regulation
105(1)
3.3.3 Power Flow Control by Voltage Regulation
105(1)
3.3.4 Agent-Based Control
106(1)
3.3.5 Distributed Control
107(2)
3.3.6 Hinfinity Control
109(1)
3.3.7 Autonomous/Islanded Mode
109(1)
3.3.8 PQ and VSI Control
110(2)
3.3.9 Autonomous Control
112(1)
3.3.10 New Q-V Droop Control
112(1)
3.3.11 Control Design Based on Transfer Function
113(1)
3.3.12 Microgrid Control in both Modes
114(2)
3.4 System of Systems
116(10)
3.4.1 Introduction
116(1)
3.4.2 SoS Control
116(1)
3.4.3 Decentralized Control
117(3)
3.4.4 Multilevel Control
120(2)
3.4.5 Networked Control Systems
122(3)
3.4.6 Comparative Analysis
125(1)
3.5 Modeling and Analysis of Inverter-Based Microgrids
126(21)
3.5.1 Introduction
128(1)
3.5.2 Microgrid Model in Autonomous Mode
129(3)
3.5.3 State-Space Model of a Voltage Source Inverter
132(8)
3.5.4 Combined Model of All the Inverters
140(1)
3.5.5 Network Model
141(2)
3.5.6 Load Model
143(1)
3.5.7 Complete Microgrid Model
144(1)
3.5.8 Sensitivity Analysis
145(2)
3.6 Conclusions
147(1)
3.7 Suggested Problems
148(4)
References
152(7)
4 Optimal Energy Management
159(50)
4.1 Introduction
159(1)
4.2 A Microgrid Model
160(2)
4.3 Microgrid and Load Forecasting
162(5)
4.3.1 Proposed NNE
162(4)
4.3.2 Microgrid Environment Forecasting
166(1)
4.4 Multiobjective Energy Management
167(7)
4.4.1 Battery Scheduling
169(1)
4.4.2 Fuzzy-Logic-Based Expert System
170(4)
4.5 Simulation Results I
174(7)
4.5.1 RE Power Generation and Load Forecasting
174(3)
4.5.2 Multiobjective Intelligent Energy Management
177(4)
4.6 Optimal Energy Cost Management
181(2)
4.7 Microgrid Overview
183(5)
4.7.1 PV Sources Control
184(1)
4.7.2 Storage Control
185(1)
4.7.3 Grid Connection Control
186(1)
4.7.4 DC Load Control
186(1)
4.7.5 Power Balancing Principle
187(1)
4.8 Supervision Control Design
188(5)
4.8.1 Human—Machine Interface Layer
189(1)
4.8.2 Prediction Layer
189(1)
4.8.3 Energy Management Layer
190(2)
4.8.4 Operation Layer
192(1)
4.9 Simulation Results II
193(8)
4.9.1 Optimization Results
194(2)
4.9.2 Powers Flow Simulation I
196(3)
4.9.3 Powers Flow Simulation II
199(1)
4.9.4 Comparison and Discussion
200(1)
4.10 Conclusions
201(1)
4.11 Suggested Problems
202(1)
References
203(6)
5 A System of Systems Framework for Microgrids
209(42)
5.1 Introduction
209(1)
5.2 Microgrid Subsystems
210(4)
5.2.1 Microgrid Central Controller
211(1)
5.2.2 Microsource and Load Controllers
212(1)
5.2.3 Microturbines
213(1)
5.2.4 Microsources and Fuel Cells
213(1)
5.2.5 Storage Devices
214(1)
5.3 The Concept of SoS
214(6)
5.3.1 Microgrids as SoS
215(1)
5.3.2 Grid-Connected Operation
216(1)
5.3.3 Grid-Islanded Operation
216(3)
5.3.4 Operation of the Microgrid Under the SoS Framework
219(1)
5.4 Modeling of Microgrid
220(5)
5.4.1 Microturbine Model
220(2)
5.4.2 PV Solar Cell Model
222(1)
5.4.3 Wind Turbine Model
223(2)
5.5 Microgrid Control Architecture
225(10)
5.5.1 Introduction
226(2)
5.5.2 Hierarchical Control
228(1)
5.5.3 Consensus Control
229(1)
5.5.4 Centralized and Decentralized Control
230(4)
5.5.5 More on Decentralized Control
234(1)
5.6 Application to Islanded Microgrid
235(6)
5.6.1 Two-Level Control Strategy
237(1)
5.6.2 Local Subsystem Control
237(1)
5.6.3 Global Corrective Control
238(1)
5.6.4 Simulation Results
239(2)
5.7 Conclusions
241(1)
5.8 Suggested Problems
242(3)
References
245(6)
Part III Communication and Control
6 Networked Control of Microgrid System of Systems
251(58)
6.1 Introduction
251(2)
6.2 Microgrid as SoS
253(3)
6.3 Microgrid Islanded System Modeling
256(2)
6.4 Networked Control System
258(3)
6.5 Closed-Loop Stability Results
261(4)
6.6 Illustrative Example
265(4)
6.7 Microalternator and Photovoltaic Systems
269(32)
6.7.1 Introduction
269(3)
6.7.2 Modeling of the Microalternator—PV System
272(1)
6.7.3 Microalternator
272(3)
6.7.4 Photovoltaic System
275(11)
6.7.5 Networked Control System Modeling
286(12)
6.7.6 Simulation Results
298(3)
6.8 Conclusions
301(3)
6.9 Suggested Problems
304(3)
References
307(2)
7 Decentralized Voltage Control Methods
309(70)
7.1 Introduction
309(1)
7.2 Control Strategy I
310(5)
7.2.1 Frequency Control
311(1)
7.2.2 Voltage Control
312(1)
7.2.3 Overcurrent Limiters
313(1)
7.2.4 Islanding Detection Approach
314(1)
7.3 Small-Signal Dynamic Analysis
315(6)
7.3.1 Dynamics of Grid-Connected Mode
316(2)
7.3.2 Dynamics of Autonomous Mode-Case 1
318(2)
7.3.3 Dynamics of Autonomous Mode-Case 2
320(1)
7.4 Time-Domain Simulation Results
321(7)
7.4.1 Grid-Connected Mode
321(1)
7.4.2 Ride-Through Capability of DG Unit
322(1)
7.4.3 Transition Capability from Grid-Connected to Islanded Mode
323(4)
7.4.4 Autonomous Mode
327(1)
7.5 Robust Control Strategy for Multi-Microgrids
328(9)
7.5.1 Introduction
329(1)
7.5.2 System Description
330(1)
7.5.3 Power Management
330(5)
7.5.4 Mathematical Model
335(2)
7.6 Control Strategy II
337(11)
7.6.1 Design Requirements
339(1)
7.6.2 Existence Conditions
339(2)
7.6.3 Real Stability Radius Constraints
341(1)
7.6.4 Controller Design Procedure
341(2)
7.6.5 A Decentralized Controller Scheme
343(1)
7.6.6 Properties of the Closed-Loop System
343(4)
7.6.7 Other Robustness Measures
347(1)
7.7 Decentralized Inverter Control
348(20)
7.7.1 System Model
349(3)
7.7.2 Power Sharing Control Strategy
352(1)
7.7.3 Controller Design
353(1)
7.7.4 Decentralized Information Acquisition
353(1)
7.7.5 Stability Analysis Without Communication Delay
354(1)
7.7.6 Model of Individual Inverter
355(4)
7.7.7 Combined Inverter Model
359(2)
7.7.8 Network Model
361(2)
7.7.9 Microgrid Model
363(1)
7.7.10 System Stability Evaluation
363(1)
7.7.11 Stability Analysis with Communication Delay
363(2)
7.7.12 Simulation Results
365(3)
7.8 Conclusions
368(1)
7.9 Suggested Problems
369(5)
References
374(5)
8 Advanced Control Approaches
379(88)
8.1 Introduction
379(1)
8.2 Distributed Control Architecture
379(29)
8.2.1 Integrated Wind/Solar/RO System Modeling
381(3)
8.2.2 Water Desalination System Description
384(2)
8.2.3 Short-Term Supervisory Predictive Control
386(1)
8.2.4 Supervisory Control System Design I
387(2)
8.2.5 Simulation Results I
389(4)
8.2.6 Integration for Long-Term Operation
393(1)
8.2.7 Supervisory Control System Design H
394(2)
8.2.8 Simulation Results II
396(4)
8.2.9 Distributed Energy Systems
400(2)
8.2.10 Distributed Frequency Control
402(3)
8.2.11 Simulation Results III
405(3)
8.3 Multilevel Control of Droop-Controlled Microgrids
408(13)
8.3.1 A Generalized Multilevel Structure
409(2)
8.3.2 Multilevel Control of AC Microgrids
411(1)
8.3.3 Inner Control Loops
412(1)
8.3.4 Primary Control
412(2)
8.3.5 Secondary Control
414(1)
8.3.6 Tertiary Control
415(1)
8.3.7 Simulation Results IV
416(5)
8.4 Multilevel Control of DC Microgrids
421(6)
8.4.1 Primary Control
422(1)
8.4.2 Secondary Control
423(1)
8.4.3 Tertiary Control
424(1)
8.4.4 Simulation Results V
425(2)
8.5 Enhanced Compensation Technique
427(13)
8.5.1 Microgrid Multilevel Control Scheme
428(2)
8.5.2 DG Local Control
430(1)
8.5.3 Fundamental Positive Sequence Powers Controllers
431(1)
8.5.4 Voltage and Current Controllers
431(1)
8.5.5 Virtual Impedance Loop
431(3)
8.5.6 Compensation Effort Controller
434(1)
8.5.7 Secondary Controller
435(1)
8.5.8 Simulation Results VI
436(4)
8.6 Distributed Cooperative Control
440(15)
8.6.1 Microgrid Control Levels
442(1)
8.6.2 Large-Signal Inverter-Based Model
443(4)
8.6.3 Cooperative Secondary Voltage Control
447(1)
8.6.4 Feedback Linearization and Tracking Synchronization
447(4)
8.6.5 Required Sparse Communication Topology
451(1)
8.6.6 Simulation Results VII
452(3)
8.7 Conclusions
455(2)
8.8 Suggested Problems
457(5)
References
462(5)
9 Real-Time Implementation
467(64)
9.1 Neural-Network-Based Secondary Control
467(20)
9.1.1 Introduction
467(3)
9.1.2 An Autonomous Microgrid
470(1)
9.1.3 Primary Control
471(3)
9.1.4 Distributed Secondary Control
474(1)
9.1.5 Neural-Network-Based Distributed Secondary Control
475(2)
9.1.6 Differential Evolution
477(1)
9.1.7 NN Training
478(3)
9.1.8 Simulation Results
481(6)
9.2 Optimal Control for Autonomous Microgrid
487(5)
9.2.1 Introduction
487(1)
9.2.2 Autonomous Microgrid Controller
488(1)
9.2.3 Power Controller
489(1)
9.2.4 Voltage Controller
490(1)
9.2.5 Current Controller
491(1)
9.2.6 Coupling Inductance and Filter
491(1)
9.2.7 Lines Model
492(1)
9.2.8 Load Model
492(1)
9.3 Problem Formulation
492(12)
9.3.1 Results and Discussions
493(2)
9.3.2 Nonlinear Time Domain Simulation
495(4)
9.3.3 Experimental Results
499(5)
9.4 Distributed Control for Autonomous Microgrid
504(17)
9.4.1 Introduction
504(1)
9.4.2 Real-Time Digital Simulator
505(1)
9.4.3 Description of RTDS Hardware
506(2)
9.4.4 Description of RTDS Software
508(1)
9.4.5 Distributed Control Scheme
508(2)
9.4.6 RTDS Implementation
510(4)
9.4.7 Simulation Results
514(1)
9.4.8 Comparison of RTDS and MATLAB Results
515(3)
9.4.9 Load Sharing During Faults
518(3)
9.5 Experimental Verification of Inverter-Based Microgrid
521(7)
9.5.1 Modeling Results
523(1)
9.5.2 Experimental Results
524(4)
9.6 Conclusions
528(1)
References
528(3)
10 Appendix
531(46)
10.1 Important Facts in Linear Algebra
531(5)
10.1.1 Basic Notions
531(3)
10.1.2 Inner Product and Orthogonality
534(1)
10.1.3 Kronecker Product and Stack of Matrices
535(1)
10.2 Linear Transformations and Matrix Groups
536(4)
10.3 Elements of Graph Theory
540(3)
10.3.1 Basic Results
540(1)
10.3.2 Laplacian Spectrum of Graphs
541(1)
10.3.3 Properties of Adjacency Matrix
541(2)
10.4 Matrix Algebra
543(8)
10.4.1 Inverse of Block Matrices
544(1)
10.4.2 Matrix Inversion Lemma
545(1)
10.4.3 Range, Kernel, Rank and Eigenvectors
546(3)
10.4.4 Symmetric and Skew-Symmetric Matrices
549(2)
10.5 Singular Value Decomposition
551(7)
10.5.1 Geometric Interpretation
553(1)
10.5.2 Example A.1
554(1)
10.5.3 Some Properties of the SVD
555(2)
10.5.4 The QR Decomposition
557(1)
10.6 Useful Formulae
558(2)
10.6.1 Ackermann's Formula for Eigenvalue Assignment
558(1)
10.6.2 Parseval Formula
559(1)
10.6.3 Frobenius Formula
560(1)
10.7 Inequalities
560(5)
10.7.1 Inequality 1
561(1)
10.7.2 Inequality 2
561(1)
10.7.3 Inequality 3
562(1)
10.7.4 Inequality 4 (Schur Complements)
562(2)
10.7.5 Inequality 5
564(1)
10.8 Lemmas
565(3)
10.9 Linear Matrix Inequalities
568(4)
10.9.1 Basics
568(1)
10.9.2 Some Standard Problems
569(2)
10.9.3 The S-procedure
571(1)
10.10 Lyapunov Map and Lyapunov Equation
572(1)
10.11 Persistence of Excitation and Sufficiently Rich Inputs
573(3)
10.12 Notes and References
576(1)
References
576(1)
Index 577