Muutke küpsiste eelistusi

E-raamat: Control and State Estimation for Dynamical Network Systems with Complex Samplings

, (Hangzhou Normal University, Hangzhou, China), (Brunel Uni, UK)
  • Formaat: 306 pages
  • Ilmumisaeg: 14-Sep-2022
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000635478
  • Formaat - EPUB+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 306 pages
  • Ilmumisaeg: 14-Sep-2022
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000635478

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book focuses on the control and state estimation problems for dynamical network systems with complex samplings subject to various network-induced phenomena. It includes a series of control and state estimation problems tackled under the passive sampling fashion. Further, it explains the effects from the active sampling fashion, i.e., event-based sampling is examined on the control/estimation performance, and novel design technologies are proposed for controllers/estimators. Simulation results are provided for better understanding of the proposed control/filtering methods. By drawing on a variety of theories and methodologies such as Lyapunov function, linear matrix inequalities, and Kalman theory, su cient conditions are derived for guaranteeing the existence of the desired controllers and estimators, which are parameterized according to certain matrix inequalities or recursive matrix equations.

  • Covers recent advances of control and state estimation for dynamical network systems with complex samplings from the engineering perspective
  • Systematically introduces the complex sampling concept, methods, and application for the control and state estimation
  • Presents unified framework for control and state estimation problems of dynamical network systems with complex samplings
  • Exploits a set of the latest techniques such as linear matrix inequality approach, Vandermonde matrix approach, and trace derivation approach
  • Explains event-triggered multi-rate fusion estimator, resilient distributed sampled-data estimator with predetermined specifications

This book is aimed at researchers, professionals, and graduate students in control engineering and signal processing.



This book focusses on the control and state estimation problems for dynamical network systems with complex samplings subject to various network-induced phenomena. It includes a series of control and state estimation problems tackled under the passive sampling fashion, effects from the active sampling fashion with simulation results.
1. Introduction
2. Stabilization and Control under Noisy Sampling Intervals
3. Distributed State Estimation over Sensor Networks with Nonuniform Samplings
4. Event-Triggered Control for Switched Systems
5. Event-Triggered H8 State Estimation for State-Saturated Systems
6. Event-Triggered State Estimation for Discrete-Time Neural Networks
7. Event-Triggered Fusion Estimation for Multi-Rate Systems
8. Synchronization Control under Dynamic Event-Triggered Mechanisms
9. Filtering or State Estimation under Dynamic Event-Triggered Mechanisms
10. Conclusions and Future Work