Preface |
|
xv | |
Acknowledgments |
|
xvii | |
Authors |
|
xix | |
Introduction |
|
xxi | |
Section I Linear and Nonlinear Control |
|
|
1 Linear Systems and Control |
|
|
3 | (66) |
|
1.1 Dynamic Systems and Feedback Control |
|
|
3 | (4) |
|
|
3 | (1) |
|
1.1.2 Simple Day-to-Day Observations |
|
|
4 | (1) |
|
1.1.3 Position Control System |
|
|
4 | (1) |
|
1.1.4 Temperature Control System |
|
|
5 | (1) |
|
1.1.5 Mathematical Modeling of Systems |
|
|
5 | (2) |
|
1.1.6 Linear, Time-Invariant, and Lumped Systems |
|
|
7 | (1) |
|
1.2 Transfer Functions and State Space Representations |
|
|
7 | (23) |
|
1.2.1 Definition: Dynamical Systems |
|
|
7 | (1) |
|
1.2.2 Definition: Causal Systems |
|
|
8 | (1) |
|
1.2.3 Definition: Linear Systems |
|
|
8 | (2) |
|
1.2.4 Time and Frequency Domains |
|
|
10 | (3) |
|
1.2.4.1 Definition: Time-Constant |
|
|
11 | (1) |
|
1.2.4.2 First-Order Systems |
|
|
12 | (1) |
|
1.2.4.3 The Role of Time-Constant |
|
|
12 | (1) |
|
1.2.5 Response of Second-Order Systems |
|
|
13 | (6) |
|
1.2.5.1 Underdamped Systems |
|
|
14 | (1) |
|
1.2.5.2 Critically Damped Systems |
|
|
14 | (1) |
|
1.2.5.3 Overdamped Systems |
|
|
14 | (2) |
|
1.2.5.4 Higher Order Systems |
|
|
16 | (1) |
|
1.2.5.5 A Time Response Analysis Example |
|
|
17 | (1) |
|
1.2.5.6 Frequency Response |
|
|
18 | (1) |
|
|
19 | (7) |
|
1.2.6.1 Definition: Decibel |
|
|
20 | (1) |
|
1.2.6.2 Construction of Bode Plots |
|
|
21 | (5) |
|
1.2.7 State Space Representation of Systems |
|
|
26 | (4) |
|
|
26 | (2) |
|
1.2.7.2 Definition: State |
|
|
28 | (1) |
|
1.2.7.3 Solution of the State Equation |
|
|
28 | (2) |
|
1.3 Stability of Linear Control Systems |
|
|
30 | (16) |
|
|
30 | (1) |
|
1.3.1.1 Definition (a): BIBO Stability |
|
|
30 | (1) |
|
1.3.1.2 Definition (b): BIBO Stability |
|
|
30 | (1) |
|
1.3.2 Routh-Hurwitz Criterion |
|
|
31 | (3) |
|
|
32 | (2) |
|
|
34 | (6) |
|
1.3.3.1 Polar and Nyquist Plots |
|
|
34 | (4) |
|
1.3.3.2 Gain and Phase Margins |
|
|
38 | (1) |
|
1.3.3.3 Definition: Gain Crossover Frequency |
|
|
39 | (1) |
|
1.3.3.4 Definition: Phase Crossover Frequency |
|
|
39 | (1) |
|
1.3.3.5 The Margins on a Bode Plot |
|
|
39 | (1) |
|
|
40 | (6) |
|
1.3.4.1 Definition: Root Locus |
|
|
40 | (5) |
|
1.3.4.2 The Stability Margin |
|
|
45 | (1) |
|
1.4 Design of Control Systems |
|
|
46 | (23) |
|
1.4.1 Development of Classical PID Control |
|
|
46 | (15) |
|
1.4.1.1 Controller Design Using Root Locus |
|
|
46 | (1) |
|
1.4.1.2 Magnitude Compensation |
|
|
47 | (1) |
|
1.4.1.3 Angle Compensation |
|
|
48 | (2) |
|
1.4.1.4 Validity of Design |
|
|
50 | (2) |
|
1.4.1.5 Controller Design Using Bode Plots |
|
|
52 | (1) |
|
1.4.1.6 Definition: Bandwidth |
|
|
52 | (1) |
|
1.4.1.7 The Design Perspective |
|
|
52 | (4) |
|
1.4.1.8 The Lead-Lag Compensator |
|
|
56 | (4) |
|
1.4.1.9 PID Implementation |
|
|
60 | (1) |
|
|
60 | (1) |
|
1.4.2 Modern Pole-Placement |
|
|
61 | (8) |
|
|
61 | (1) |
|
1.4.2.2 Definition: Controllability |
|
|
62 | (2) |
|
1.4.2.3 Definition: Similarity |
|
|
64 | (2) |
|
1.4.2.4 Algorithm: Pole Assignment - SISO Case |
|
|
66 | (3) |
|
|
69 | (12) |
|
2.1 Nonlinear Phenomena and Nonlinear Models |
|
|
69 | (4) |
|
|
70 | (1) |
|
|
71 | (1) |
|
|
71 | (2) |
|
2.2 Fundamental Properties of ODES |
|
|
73 | (5) |
|
|
73 | (2) |
|
2.2.1.1 Stability of Equilibria |
|
|
73 | (2) |
|
2.2.2 Non-Autonomous Systems |
|
|
75 | (1) |
|
2.2.2.1 Equilibrium Points |
|
|
76 | (1) |
|
2.2.3 Existence and Uniqueness |
|
|
76 | (2) |
|
2.3 Contraction Mapping Theorem |
|
|
78 | (3) |
|
3 Nonlinear Stability Analysis |
|
|
81 | (32) |
|
3.1 Phase Plane Techniques |
|
|
81 | (8) |
|
3.1.1 Equilibria of Nonlinear Systems |
|
|
85 | (4) |
|
3.2 Poincare-Bendixson Theorem |
|
|
89 | (3) |
|
3.2.1 Existence of Limit Cycles |
|
|
90 | (2) |
|
3.3 Hartman-Grobman Theorem |
|
|
92 | (1) |
|
3.4 Lyapunov Stability Theory |
|
|
93 | (15) |
|
3.4.1 Lyapunov's Direct Method |
|
|
94 | (3) |
|
3.4.1.1 Positive Definite Lyapunov Functions |
|
|
94 | (1) |
|
3.4.1.2 Equilibrium Point Theorems |
|
|
95 | (1) |
|
3.4.1.3 Lyapunov Theorem for Local Stability |
|
|
95 | (1) |
|
3.4.1.4 Lyapunov Theorem for Global Stability |
|
|
96 | (1) |
|
3.4.2 La Salle's Invariant Set Theorems |
|
|
97 | (2) |
|
3.4.3 Krasovskii's Method |
|
|
99 | (1) |
|
3.4.4 The Variable Gradient Method |
|
|
100 | (1) |
|
3.4.5 Stability of Non-Autonomous Systems |
|
|
101 | (3) |
|
3.4.6 Instability Theorems |
|
|
104 | (1) |
|
3.4.7 Passivity Framework |
|
|
105 | (3) |
|
3.4.7.1 The Passivity Formalism |
|
|
106 | (2) |
|
3.5 Describing Function Analysis |
|
|
108 | (5) |
|
3.5.1 Applications of Describing Functions |
|
|
109 | (1) |
|
|
110 | (3) |
|
4 Nonlinear Control Design |
|
|
113 | (21) |
|
4.1 Full-State Linearization |
|
|
113 | (9) |
|
4.1.1 Handling Multi-input Systems |
|
|
121 | (1) |
|
4.2 Input-Output Linearization |
|
|
122 | (3) |
|
4.2.1 Definition: Relative Degree |
|
|
123 | (1) |
|
4.2.2 Zero Dynamics and Non-Minimum Phase Systems |
|
|
124 | (19) |
|
4.2.2.1 Definition: Partially State Feedback Linearizable |
|
|
124 | (1) |
|
|
125 | (2) |
|
|
127 | (3) |
|
|
130 | (3) |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
135 | (2) |
|
|
137 | (2) |
|
|
139 | (1) |
|
|
140 | (3) |
Section II Optimal and H-Infinity Control |
|
|
5 Optimization-Extremization of Cost Function |
|
|
143 | (16) |
|
5.1 Optimal Control Theory: An Economic Interpretation |
|
|
143 | (2) |
|
5.1.1 Solution for the Optimal Path |
|
|
144 | (1) |
|
|
145 | (1) |
|
5.2 Calculus of Variation |
|
|
145 | (1) |
|
5.2.1 Sufficient Conditions |
|
|
145 | (1) |
|
5.2.1.1 Weierstrass Result |
|
|
146 | (1) |
|
5.2.2 Necessary Conditions |
|
|
146 | (1) |
|
5.3 Euler-Lagrange Equation |
|
|
146 | (1) |
|
5.4 Constraint Optimization Problem |
|
|
147 | (1) |
|
5.5 Problems with More Variables |
|
|
148 | (1) |
|
5.5.1 With Higher Order Derivatives |
|
|
148 | (1) |
|
5.5.2 With Several Unknown Functions |
|
|
148 | (1) |
|
5.5.3 With More Independent Variables |
|
|
148 | (1) |
|
|
148 | (1) |
|
5.7 Conversion of BVP to Variational Problem |
|
|
149 | (1) |
|
5.7.1 Solution of a Variational Problem Using a Direct Method |
|
|
150 | (1) |
|
5.8 General Variational Approach |
|
|
150 | (5) |
|
5.8.1 First Order Necessary Conditions |
|
|
151 | (1) |
|
5.8.2 Mangasarian Sufficient Conditions |
|
|
152 | (1) |
|
5.8.3 Interpretation of the Co-State Variables |
|
|
152 | (1) |
|
5.8.4 Principle of Optimality |
|
|
153 | (1) |
|
5.8.5 General Terminal Constraints |
|
|
154 | (5) |
|
5.8.5.1 Necessary Conditions for Equality Terminal Constraints |
|
|
154 | (1) |
|
|
155 | (4) |
|
|
159 | (36) |
|
6.1 Optimal Control Problem |
|
|
159 | (2) |
|
6.1.1 Dynamic System and Performance Criterion |
|
|
159 | (1) |
|
6.1.2 Physical Constraints |
|
|
160 | (1) |
|
6.1.2.1 Point Constraints |
|
|
160 | (1) |
|
6.1.2.2 Isoperimetric Constraints |
|
|
160 | (1) |
|
|
160 | (1) |
|
6.1.3 Optimality Criteria |
|
|
160 | (1) |
|
6.1.4 Open Loop and Closed Loop Optimal Control |
|
|
161 | (1) |
|
|
161 | (4) |
|
6.2.1 Hamiltonian Dynamics |
|
|
161 | (2) |
|
6.2.2 Pontryagin Maximum Principle |
|
|
163 | (1) |
|
6.2.2.1 Fixed Time, Free Endpoint Problem |
|
|
163 | (1) |
|
6.2.2.2 Free Time, Fixed Endpoint Problem |
|
|
164 | (1) |
|
6.2.3 Maximum Principle with Transversality Conditions |
|
|
164 | (1) |
|
6.2.4 Maximum Principle with State Constraints |
|
|
164 | (1) |
|
|
165 | (4) |
|
6.3.1 Dynamic Programming Method |
|
|
166 | (1) |
|
6.3.2 Verification of Optimality |
|
|
166 | (1) |
|
6.3.3 Dynamic Programming and Pontryagin Maximum Principle |
|
|
167 | (2) |
|
6.3.3.1 Characteristic Equations |
|
|
167 | (1) |
|
6.3.3.2 Relation between Dynamic Programming and the Maximum Principle |
|
|
167 | (2) |
|
|
169 | (1) |
|
6.4.1 Isaacs's Equations and Maximum Principle/Dynamic Programming in Games |
|
|
169 | (1) |
|
6.5 Dynamic Programming in Stochastic Setting |
|
|
170 | (2) |
|
6.6 Linear Quadratic Optimal Regulator for Time-Varying Systems |
|
|
172 | (1) |
|
|
173 | (1) |
|
6.6.2 LQ Optimal Regulator for Mixed State and Control Terms |
|
|
173 | (1) |
|
|
173 | (9) |
|
|
173 | (1) |
|
6.7.2 Quadratic Optimal Control |
|
|
174 | (2) |
|
6.7.2.1 Linear Quadratic Optimal State Regulator |
|
|
174 | (2) |
|
6.7.2.2 Linear Quadratic Optimal Output Regulator |
|
|
176 | (1) |
|
6.7.3 Stability of the Linear Quadratic Controller/Regulator |
|
|
176 | (1) |
|
6.7.4 Linear Quadratic Gaussian (LQG) Control |
|
|
177 | (1) |
|
6.7.4.1 State Estimation and LQ Controller |
|
|
177 | (1) |
|
6.7.4.2 Separation Principle and Nominal Closed Loop Stability |
|
|
178 | (1) |
|
6.7.5 Tracking and Regulation with Quadratic Optimal Controller |
|
|
178 | (5) |
|
6.7.5.1 Transformation of the Model for Output Regulation and Tracking |
|
|
179 | (1) |
|
6.7.5.2 Unmeasured Disturbances and Model Mismatch |
|
|
180 | (1) |
|
6.7.5.3 Innovations Bias Approach |
|
|
180 | (1) |
|
6.7.5.4 State Augmentation Approach |
|
|
181 | (1) |
|
6.8 Pole Placement Design Method |
|
|
182 | (1) |
|
6.9 Eigenstructure Assignment |
|
|
183 | (2) |
|
|
183 | (1) |
|
6.9.2 Closed Loop Eigenstructure Assignment |
|
|
184 | (1) |
|
6.10 Minimum Time and Minimum-Fuel Trajectory Optimization |
|
|
185 | (4) |
|
6.10.1 Problem Definition |
|
|
185 | (1) |
|
6.10.2 Parameterization of the Control Problem |
|
|
186 | (2) |
|
6.10.3 Control Profile for Small α |
|
|
188 | (1) |
|
6.10.4 Determination of Critical α |
|
|
188 | (1) |
|
|
189 | (6) |
|
7 Model Predictive Control |
|
|
195 | (20) |
|
7.1 Model-Based Prediction of Future Behavior |
|
|
195 | (1) |
|
7.2 Innovations Bias Approach |
|
|
196 | (1) |
|
7.3 State Augmentation Approach |
|
|
197 | (1) |
|
7.4 Conventional Formulation of MPC |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
199 | (2) |
|
7.7 Quadratic Programming (QP) Formulation of MPC |
|
|
201 | (1) |
|
7.8 State-Space Formulation of the MPC |
|
|
202 | (1) |
|
|
202 | (1) |
|
|
203 | (5) |
|
|
208 | (7) |
|
|
215 | (39) |
|
8.1 Robust Control of Uncertain Plants |
|
|
216 | (1) |
|
8.1.1 Robust Stability and HI Norm |
|
|
216 | (1) |
|
8.1.2 Disturbance Rejection and Loop-Shaping Using HI Control |
|
|
217 | (1) |
|
|
217 | (6) |
|
8.2.1 The Optimal State Feedback Problem |
|
|
218 | (1) |
|
8.2.2 The Optimal State Estimation Problem |
|
|
219 | (1) |
|
8.2.3 The Optimal Output Feedback Problem |
|
|
220 | (1) |
|
8.2.4 H2 Optimal Control against General Deterministic Inputs |
|
|
221 | (1) |
|
8.2.5 Weighting Matrices in H2 Optimal Control |
|
|
222 | (1) |
|
|
223 | (3) |
|
8.3.1 Hinfinity Optimal State Feedback Control |
|
|
223 | (2) |
|
8.3.2 Hinfinity Optimal State Estimation |
|
|
225 | (1) |
|
8.3.3 Hinfinity Optimal Output Feedback Problem |
|
|
225 | (1) |
|
8.3.4 The Relation between S, P and Z |
|
|
226 | (1) |
|
8.4 Robust Stability and Hinfinity Norm |
|
|
226 | (2) |
|
8.5 Structured Uncertainties and Structured Singular Values |
|
|
228 | (2) |
|
8.6 Robust Performance Problem |
|
|
230 | (3) |
|
8.6.1 The Robust HI Performance Problem |
|
|
230 | (1) |
|
8.6.2 The Robust H2 Performance Problem |
|
|
231 | (2) |
|
|
233 | (7) |
|
8.7.1 Some Considerations |
|
|
234 | (1) |
|
8.7.2 Basic Performance Limitations |
|
|
235 | (1) |
|
8.7.3 Application of Hinfinity Optimal Control to Loop Shaping |
|
|
236 | (4) |
|
|
240 | (14) |
|
|
254 | (7) |
|
|
261 | (6) |
|
|
267 | (17) |
|
|
284 | (1) |
|
References for Section II |
|
|
285 | (4) |
Section III Digital and Adaptive Control |
|
|
9 Discrete Time Control Systems |
|
|
289 | (20) |
|
9.1 Representation of Discrete Time System |
|
|
290 | (2) |
|
9.1.1 Numerical Differentiation |
|
|
291 | (1) |
|
9.1.2 Numerical Integration |
|
|
291 | (1) |
|
9.1.3 Difference Equations |
|
|
291 | (1) |
|
9.2 Modeling of the Sampling Process |
|
|
292 | (2) |
|
9.2.1 Finite Pulse Width Sampler |
|
|
292 | (1) |
|
9.2.2 An Approximation of the Finite Pulse Width Sampling |
|
|
293 | (1) |
|
|
294 | (1) |
|
9.3 Reconstruction of the Data |
|
|
294 | (1) |
|
|
294 | (1) |
|
|
295 | (1) |
|
9.4 Pulse Transfer Function |
|
|
295 | (3) |
|
9.4.1 Pulse Transfer Function of the ZOH |
|
|
296 | (1) |
|
9.4.2 Pulse Transfer Function of a Closed Loop System |
|
|
297 | (1) |
|
9.4.3 Characteristics Equation |
|
|
298 | (1) |
|
9.5 Stability Analysis in z-Plane |
|
|
298 | (1) |
|
9.5.1 Jury Stability Test |
|
|
298 | (1) |
|
|
299 | (1) |
|
9.5.3 Bilinear Transformation and Routh Stability Criterion |
|
|
299 | (1) |
|
|
299 | (1) |
|
9.6 Time Responses of Discrete Time Systems |
|
|
299 | (4) |
|
9.6.1 Transient Response Specifications and Steady-State Error |
|
|
299 | (1) |
|
9.6.2 Type-n Discrete Time Systems |
|
|
300 | (1) |
|
9.6.3 Study of a Second Order Control System |
|
|
301 | (1) |
|
9.6.4 Correlation between Time Response and Root Locations in s- and z-Planes |
|
|
302 | (1) |
|
9.6.5 Dominant Closed Loop Pole Pairs |
|
|
302 | (1) |
|
|
303 | (6) |
|
10 Design of Discrete Time Control Systems |
|
|
309 | (18) |
|
10.1 Design Based on Root Locus Method |
|
|
309 | (2) |
|
10.1.1 Rules for Construction of the Root Locus |
|
|
309 | (1) |
|
10.1.2 Root Locus of a Digital Control System |
|
|
310 | (1) |
|
10.1.3 Effect of Sampling Period T |
|
|
310 | (1) |
|
|
311 | (1) |
|
10.2 Frequency Domain Analysis |
|
|
311 | (1) |
|
|
311 | (1) |
|
10.2.2 Bode Plot, and Gain and Phase Margins |
|
|
312 | (1) |
|
|
312 | (1) |
|
10.3.1 Phase Lead, Phase Lag, and Lag-Lead Compensators |
|
|
312 | (1) |
|
10.3.2 Compensator Design Using Bode Plot |
|
|
313 | (1) |
|
10.3.2.1 Phase Lead Compensator |
|
|
313 | (1) |
|
10.3.2.2 Phase Lag Compensator |
|
|
313 | (1) |
|
10.3.2.3 Lag-Lead Compensator |
|
|
313 | (1) |
|
10.4 Design with Deadbeat Response |
|
|
313 | (2) |
|
10.4.1 DBR Design of a System When the Poles and Zeros Are in the Unit Circle |
|
|
314 | (1) |
|
10.4.1.1 Physical Realizability of the Controller Dc(z) |
|
|
314 | (1) |
|
10.4.2 DBR When Some of the Poles and Zeros Are on or outside the Unit Circle |
|
|
315 | (1) |
|
10.4.3 Sampled Data Control Systems with DBR |
|
|
315 | (1) |
|
10.5 State Feedback Controller |
|
|
315 | (4) |
|
10.5.1 Designing K by Transforming the State Model into Controllable Canonical Form |
|
|
316 | (1) |
|
10.5.2 Designing K by Ackermann's Formula |
|
|
317 | (1) |
|
10.5.3 Set Point Tracking |
|
|
317 | (1) |
|
10.5.4 State Feedback with Integral Control |
|
|
318 | (1) |
|
|
319 | (4) |
|
10.6.1 Full Order Observers |
|
|
319 | (1) |
|
10.6.1.1 Open Loop Estimator |
|
|
319 | (1) |
|
10.6.1.2 Luenberger State Observer |
|
|
319 | (1) |
|
10.6.1.3 Controller with Observer |
|
|
320 | (1) |
|
10.6.2 Reduced Order Observers |
|
|
320 | (1) |
|
10.6.3 Controller with Reduced Order Observer |
|
|
321 | (1) |
|
10.6.4 Deadbeat Control by State Feedback and Deadbeat Observer |
|
|
322 | (1) |
|
10.6.5 Incomplete State Feedback |
|
|
322 | (1) |
|
10.6.6 Output Feedback Design |
|
|
322 | (1) |
|
|
323 | (4) |
|
10.7.1 Discrete Euler-Lagrange Equation |
|
|
323 | (2) |
|
10.7.2 Linear Quadratic Regulator |
|
|
325 | (2) |
|
|
327 | (44) |
|
11.1 Direct and Indirect Adaptive Control Methods |
|
|
328 | (3) |
|
11.1.1 Adaptive Control and Adaptive Regulation |
|
|
330 | (1) |
|
|
331 | (2) |
|
|
332 | (1) |
|
11.2.2 LPV and LFT Synthesis |
|
|
333 | (1) |
|
11.2.3 Fuzzy Logic-Based Gain Scheduling (FGS) |
|
|
333 | (1) |
|
11.3 Parameter Dependent Plant Models |
|
|
333 | (3) |
|
11.3.1 Linearization Based GS |
|
|
334 | (1) |
|
11.3.2 Off Equilibrium Linearizations |
|
|
334 | (1) |
|
|
335 | (1) |
|
11.3.4 Linear Fractional Transformation |
|
|
335 | (1) |
|
11.4 Classical Gain Scheduling |
|
|
336 | (1) |
|
|
336 | (1) |
|
11.4.2 GS Controller Design |
|
|
336 | (1) |
|
11.4.2.1 Linearization Scheduling |
|
|
336 | (1) |
|
11.4.2.2 Interpolation Methods |
|
|
336 | (1) |
|
11.4.2.3 Velocity Based Scheduling |
|
|
337 | (1) |
|
11.4.3 Hidden Coupling Terms |
|
|
337 | (1) |
|
11.4.4 Stability Properties |
|
|
337 | (1) |
|
11.5 LPV Controller Synthesis |
|
|
337 | (2) |
|
11.5.1 LPV Controller Synthesis Set Up |
|
|
338 | (1) |
|
11.5.1.1 Stability and Performance Analysis |
|
|
338 | (1) |
|
11.5.2 Lyapunov Based LPV Control Synthesis |
|
|
338 | (1) |
|
|
338 | (1) |
|
11.5.4 Mixed LPV-LFT Approaches |
|
|
339 | (1) |
|
11.6 Fuzzy Logic-Based Gain Scheduling |
|
|
339 | (1) |
|
|
340 | (3) |
|
11.7.1 Minimum Variance Regulator/Controller |
|
|
341 | (1) |
|
11.7.2 Pole Placement Control |
|
|
342 | (1) |
|
11.7.3 A Bilinear Approach |
|
|
343 | (1) |
|
11.8 Adaptive Pole Placement |
|
|
343 | (1) |
|
11.9 Model Reference Adaptive Control/Systems (MRACS) |
|
|
344 | (3) |
|
11.9.1 MRAC Design of First Order System |
|
|
344 | (1) |
|
11.9.2 Adaptive Dynamic Inversion (ADI) Control |
|
|
345 | (1) |
|
11.9.3 Parameter Convergence and Comparison |
|
|
346 | (1) |
|
11.9.4 MRAC for n-th Order System |
|
|
346 | (1) |
|
11.9.5 Robustness of Adaptive Control |
|
|
347 | (1) |
|
11.10 A Comprehensive Example |
|
|
347 | (4) |
|
11.10.1 The Underlying Design Problem for Known Systems |
|
|
348 | (1) |
|
11.10.2 Parameter Estimation |
|
|
349 | (1) |
|
11.10.3 An Explicit Self-Tuner |
|
|
349 | (1) |
|
11.10.4 An Implicit Self-Tuner |
|
|
350 | (1) |
|
11.10.5 Other Implicit Self-Tuners |
|
|
350 | (1) |
|
11.11 Stability, Convergence, and Robustness Aspects |
|
|
351 | (2) |
|
|
351 | (1) |
|
|
351 | (2) |
|
11.11.2.1 Martingale Theory |
|
|
352 | (1) |
|
11.11.2.2 Averaging Methods |
|
|
352 | (1) |
|
11.12 Use of the Stochastic Control Theory |
|
|
353 | (1) |
|
11.13 Uses of Adaptive Control Approaches |
|
|
353 | (2) |
|
|
353 | (1) |
|
11.13.2 Automatic Construction of Gain Schedulers and Adaptive Regulators |
|
|
353 | (1) |
|
11.13.3 Practical Aspects and Applications |
|
|
354 | (18) |
|
11.13.3.1 Parameter Tracking |
|
|
354 | (1) |
|
11.13.3.2 Estimator Windup and Bursts |
|
|
354 | (1) |
|
|
354 | (1) |
|
11.13.3.4 Numerics and Coding |
|
|
355 | (1) |
|
11.13.3.5 Integral Action |
|
|
355 | (1) |
|
11.13.3.6 Supervisory Loops |
|
|
355 | (1) |
|
|
355 | (1) |
|
|
355 | (8) |
|
|
363 | (3) |
|
|
366 | (5) |
|
12 Computer-Controlled Systems |
|
|
371 | (10) |
|
12.1 Computers in Measurement and Control |
|
|
371 | (1) |
|
12.2 Components in Computer-Based Measurement and Control System (CMCS) |
|
|
372 | (1) |
|
|
372 | (1) |
|
12.3.1 Centralized Computer Control System |
|
|
372 | (1) |
|
12.3.2 Distributed Computer Control Systems (DDCS) |
|
|
372 | (1) |
|
12.3.3 Hierarchical Computer Control Systems |
|
|
372 | (1) |
|
12.3.4 Tasks of Computer Control Systems and Interfaces |
|
|
373 | (1) |
|
12.3.4.1 HMI-Human Machine Interface |
|
|
373 | (1) |
|
12.3.4.2 Hardware for Computer-Based Process/Plant Control System |
|
|
373 | (1) |
|
12.3.4.3 Interfacing Computer System with Plant |
|
|
373 | (1) |
|
12.4 Smart Sensor Systems |
|
|
373 | (2) |
|
12.4.1 Components of Smart Sensor Systems |
|
|
374 | (1) |
|
12.5 Control System Software and Hardware |
|
|
375 | (1) |
|
12.5.1 Embedded Control Systems |
|
|
375 | (1) |
|
|
375 | (1) |
|
12.5.2.1 Software and Hardware Building Blocks |
|
|
375 | (1) |
|
12.5.2.2 Appliance/System Building Blocks |
|
|
375 | (1) |
|
|
376 | (1) |
|
12.7 Aspects of Implementation of a Digital Controller |
|
|
376 | (43) |
|
12.7.1 Representations and Realizations of the Digital Controller |
|
|
377 | (1) |
|
12.7.1.1 Pre-Filtering and Computational Delays |
|
|
377 | (1) |
|
12.7.1.2 Nonlinear Actuators |
|
|
377 | (1) |
|
12.7.1.3 Antiwindup with an Explicit Observer |
|
|
377 | (1) |
|
12.7.2 Operational and Numerical Aspects |
|
|
378 | (1) |
|
12.7.3 Realization of Digital Controllers |
|
|
379 | (40) |
|
12.7.3.1 Direct/Companion Forms |
|
|
379 | (1) |
|
12.7.3.2 Well-Conditioned Form |
|
|
379 | (1) |
|
|
379 | (1) |
|
12.7.3.4 Short-Sampling-Interval Modification and 5-Operator Form |
|
|
380 | (1) |
|
|
380 | (1) |
|
|
381 | (33) |
|
Exercises for Section III |
|
|
414 | (1) |
|
References for Section III |
|
|
415 | (4) |
Section IV AI-Based Control |
|
|
13 Introduction to AI-Based Control |
|
|
419 | (32) |
|
13.1 Motivation for Computational Intelligence in Control |
|
|
419 | (1) |
|
13.2 Artificial Neural Networks |
|
|
419 | (14) |
|
13.2.1 An Intuitive Introduction |
|
|
419 | (1) |
|
|
420 | (1) |
|
|
421 | (2) |
|
13.2.4 The Architecture of Neural Networks |
|
|
423 | (1) |
|
13.2.5 Learning with Gradient Descent |
|
|
424 | (4) |
|
13.2.5.1 Issues in Implementation |
|
|
428 | (1) |
|
13.2.6 Unsupervised and Reinforcement Learning |
|
|
428 | (1) |
|
13.2.7 Radial Basis Networks |
|
|
429 | (2) |
|
13.2.7.1 Information Processing of an RBF Network |
|
|
429 | (2) |
|
13.2.8 Recurrent Neural Networks |
|
|
431 | (1) |
|
13.2.9 Towards Deep Learning |
|
|
432 | (1) |
|
|
432 | (1) |
|
|
433 | (11) |
|
13.3.1 The Linguistic Variables |
|
|
435 | (1) |
|
13.3.2 The Fuzzy Operators |
|
|
436 | (1) |
|
13.3.3 Reasoning with Fuzzy Sets |
|
|
437 | (1) |
|
13.3.4 The Defuzzification |
|
|
438 | (3) |
|
|
441 | (1) |
|
13.3.5 Type II Fuzzy Systems and Control |
|
|
441 | (2) |
|
13.3.5.1 MATLAB Implementation |
|
|
443 | (1) |
|
|
443 | (1) |
|
13.4 Genetic Algorithms and Other Nature Inspired Methods |
|
|
444 | (5) |
|
13.4.1 Genetic Algorithms |
|
|
444 | (3) |
|
13.4.2 Particle Swarm Optimization |
|
|
447 | (1) |
|
|
448 | (1) |
|
|
448 | (1) |
|
|
449 | (2) |
|
14 ANN-Based Control Systems |
|
|
451 | (20) |
|
14.1 Applications of Radial Basis Function Neural Networks |
|
|
451 | (9) |
|
14.1.1 Fully Tuned Extended Minimal Resource Allocation Network RBF |
|
|
451 | (2) |
|
14.1.2 Autolanding Problem Formulation |
|
|
453 | (7) |
|
14.2 Optimal Control Using Artificial Neural Network |
|
|
460 | (2) |
|
14.2.1 Neural Network LQR Control Using the Hamilton-Jacobi-Bellman Equation |
|
|
460 | (1) |
|
14.2.2 Neural Network Hinfinity, Control Using the Hamilton-Jacobi-Isaacs Equation |
|
|
461 | (1) |
|
14.3 Historical Development |
|
|
462 | (1) |
|
|
463 | (3) |
|
|
466 | (5) |
|
|
471 | (22) |
|
|
471 | (3) |
|
15.2 Industrial Process Control Case Study |
|
|
474 | (5) |
|
|
476 | (3) |
|
|
479 | (1) |
|
|
479 | (4) |
|
|
483 | (10) |
|
16 Nature Inspired Optimization for Controller Design |
|
|
493 | (18) |
|
16.1 Control Application in Light Energy Efficiency |
|
|
493 | (1) |
|
16.1.1 A Control Systems Perspective |
|
|
493 | (1) |
|
16.2 PSO Aided Fuzzy Control System |
|
|
494 | (2) |
|
16.3 Genetic Algorithms (GAs) Aided Semi-Active Suspension System |
|
|
496 | (3) |
|
16.4 GA Aided Active Suspension System |
|
|
499 | (1) |
|
16.5 Training ANNs Using GAs |
|
|
500 | (3) |
|
|
503 | (1) |
|
|
504 | (4) |
|
|
508 | (3) |
|
|
511 | (12) |
|
|
523 | (1) |
|
References for Section IV |
|
|
524 | (5) |
Section V System Theory and Control Related Topics |
|
|
|
529 | (4) |
|
|
533 | (6) |
|
|
539 | (8) |
|
|
547 | (10) |
|
|
557 | (18) |
|
|
575 | (12) |
|
|
587 | (38) |
Index |
|
625 | |