Muutke küpsiste eelistusi

E-raamat: Control Theory of Partial Differential Equations

Edited by (Tech Universitat Darmstadt, Germany)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 325,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The field of control theory in PDEs has broadened considerably as more realistic models have been introduced and investigated. This book presents a broad range of recent developments, new discoveries, and mathematical tools in the field. The authors discuss topics such as elasticity, thermo-elasticity, aero-elasticity, interactions between fluids and elastic structures, and fluid dynamics and the new challenges that they present. Other control theoretic problems include parabolic systems, dynamical Lame systems, linear and nonlinear hyperbolic equations, and pseudo-differential operators on a manifold. This is a valuable tool authored by international specialists in the field.
Preface 1 Asymptotic Rates of Blowup for the Minimal Energy Function for
the Null Controllability of Thermoelastic Plates: The Free Case 2 Interior
and Boundary Stabilization of Navier-Stokes Equations 3 On Approximating
Properties of Solutions of the Heat Equation 4 Kolmogorovs ?-Entropy for a
Class of Invariant Sets and Dimension of Global Attractors for Second-Order
Evolution Equations with Nonlinear Damping 5 Extension of the Uniform Cusp
Property in Shape Optimization 6 Garding ? s Inequality on Manifolds with
Boundary 7 An Inverse Problem for the Dynamical Lame System with Two Sets of
Local Boundary Data 8 On Singular Perturbations in Problems of Exact
Controllability of Second-Order Control Systems 9 Domain Decomposition in
Optimal Control Problems for Partial Differential Equations Revisited 10
Controllability of Parabolic and Hyperbolic Equations: Toward a Unified
Theory 11 A Remark on Boundary Control on Manifolds. 12 Model Structure and
Boundary Stabilization of an Axially Moving Elastic Tape 13 Nonlinear
Perturbations of Partially Controllable Systems 14 On Junctions in a Network
of Canals 15 On Uniform Null Controllability and Blowup Estimates 16
Poroelastic Filtration Coupled to Stokes Flow 17 Operator-Valued Analytic
Functions Generated by Aircraft Wing Model (Subsonic Case) 18 Optimal Design
of Mechanical Structures 19 Global Exact Controllability on H1 (?) × L2(?) of
Semilinear Wave Equations with Neumann L2(0,T;L2(?1))-Boundary Control 20
Carleman Estimates for the Three-Dimensional Nonstationary Lame´ System and
Application to an Inverse Problem 21 Forced Oscillations of a Damped
Benjamin-Bona-Mahony Equation in a Quarter Plane 22 Exact Controllability of
the Heat Equation with Hyperbolic Memory Kernel
Guenter Leugering, University of Erlangen, Nuremberg, Germany. Oleg Imanuvilov, Iowa State University, Ames, Iowa, USA. Bing-Yu Zhang, University of Cincinnati, Cincinnati, Ohio, USA. Roberto Triggiani, University of Virginia, Charlottesville, Virginia, USA.