Muutke küpsiste eelistusi

E-raamat: Convex Optimization: Introductory Course

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 05-Jan-2021
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119804086
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 170,37 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 05-Jan-2021
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119804086
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides easy access to the basic principles and methods for solving constrained and unconstrained convex optimization problems. Included are sections that cover: basic methods for solving constrained and unconstrained optimization problems with differentiable objective functions; convex sets and their properties; convex functions and their properties and generalizations; and basic principles of sub-differential calculus and convex programming problems. Convex Optimization provides detailed proofs for most of the results presented in the book and also includes many figures and exercises for a better understanding of the material. Exercises are given at the end of each chapter, with solutions and hints to selected exercises given at the end of the book. Undergraduate and graduate students, researchers in different disciplines, as well as practitioners will all benefit from this accessible approach to convex optimization methods.

1. Optimization Problems with Differentiable Objective Functions.
2. Convex Sets.
3. Convex Functions.
4. Generalizations of Convex Functions.
5. Sub-gradient and Sub-differential of Finite Convex Function.
6. Constrained Optimization Problems.
Mikhail Moklyachuk is Full Professor at the Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, Ukraine.