Preface |
|
xi | |
1 Mathematical Background |
|
1 | (34) |
|
1.1 Mathematical prerequisites |
|
|
1 | (21) |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
9 | (2) |
|
|
11 | (1) |
|
1.1.6 Complement, scaled sets, and sum of sets |
|
|
11 | (1) |
|
1.1.7 Closure and boundary |
|
|
12 | (1) |
|
1.1.8 Supremum and infimum |
|
|
13 | (2) |
|
|
15 | (1) |
|
|
15 | (1) |
|
1.1.11 Derivative and gradient |
|
|
16 | (3) |
|
|
19 | (1) |
|
|
20 | (2) |
|
1.2 Linear algebra revisited |
|
|
22 | (9) |
|
|
22 | (1) |
|
1.2.2 Range space, null space, and orthogonal projection |
|
|
22 | (2) |
|
1.2.3 Matrix determinant and inverse |
|
|
24 | (1) |
|
1.2.4 Positive definiteness and semidefiniteness |
|
|
24 | (1) |
|
1.2.5 Eigenvalue decomposition |
|
|
25 | (2) |
|
1.2.6 Square root factorization of PSD matrices |
|
|
27 | (1) |
|
1.2.7 Singular value decomposition |
|
|
28 | (2) |
|
1.2.8 Least-squares approximation |
|
|
30 | (1) |
|
1.3 Summary and discussion |
|
|
31 | (4) |
2 Convex Sets |
|
35 | (50) |
|
2.1 Affine and convex sets |
|
|
35 | (11) |
|
2.1.1 Lines and line segments |
|
|
35 | (1) |
|
2.1.2 Affine sets and affine hulls |
|
|
35 | (4) |
|
2.1.3 Relative interior and relative boundary |
|
|
39 | (1) |
|
2.1.4 Convex sets and convex hulls |
|
|
40 | (4) |
|
2.1.5 Cones and conic hulls |
|
|
44 | (2) |
|
2.2 Examples of convex sets |
|
|
46 | (9) |
|
2.2.1 Hyperplanes and halfspaces |
|
|
46 | (2) |
|
2.2.2 Euclidean balls and ellipsoids |
|
|
48 | (2) |
|
|
50 | (1) |
|
|
51 | (3) |
|
|
54 | (1) |
|
2.2.6 Positive semidefinite cones |
|
|
55 | (1) |
|
2.3 Convexity preserving operations |
|
|
55 | (8) |
|
|
56 | (1) |
|
|
57 | (4) |
|
2.3.3 Perspective function and linear-fractional function |
|
|
61 | (2) |
|
2.4 Generalized inequalities |
|
|
63 | (3) |
|
2.4.1 Proper cones and generalized inequalities |
|
|
63 | (1) |
|
2.4.2 Properties of generalized inequalities |
|
|
64 | (1) |
|
2.4.3 Minimum and minimal elements |
|
|
64 | (2) |
|
2.5 Dual norms and dual cones |
|
|
66 | (12) |
|
|
66 | (7) |
|
|
73 | (5) |
|
2.6 Separating and supporting hyperplanes |
|
|
78 | (6) |
|
2.6.1 Separating hyperplane theorem |
|
|
78 | (3) |
|
2.6.2 Supporting hyperplanes |
|
|
81 | (3) |
|
2.7 Summary and discussion |
|
|
84 | (1) |
3 Convex Functions |
|
85 | (50) |
|
3.1 Basic properties and examples of convex functions |
|
|
85 | (23) |
|
3.1.1 Definition and fundamental properties |
|
|
85 | (6) |
|
3.1.2 First-order condition |
|
|
91 | (4) |
|
3.1.3 Second-order condition |
|
|
95 | (1) |
|
|
96 | (5) |
|
|
101 | (4) |
|
3.1.6 Jensen's inequality |
|
|
105 | (3) |
|
3.2 Convexity preserving operations |
|
|
108 | (9) |
|
3.2.1 Nonnegative weighted sum |
|
|
108 | (1) |
|
3.2.2 Composition with affine mapping |
|
|
108 | (1) |
|
3.2.3 Composition (scalar) |
|
|
109 | (1) |
|
3.2.4 Pointwise maximum and supremum |
|
|
110 | (3) |
|
3.2.5 Pointwise minimum and infimum |
|
|
113 | (2) |
|
3.2.6 Perspective of a function |
|
|
115 | (2) |
|
3.3 Quasiconvex functions |
|
|
117 | (10) |
|
3.3.1 Definition and examples |
|
|
117 | (5) |
|
3.3.2 Modified Jensen's inequality |
|
|
122 | (1) |
|
3.3.3 First-order condition |
|
|
123 | (2) |
|
3.3.4 Second-order condition |
|
|
125 | (2) |
|
3.4 Monotonicity on generalized inequalities |
|
|
127 | (2) |
|
3.5 Convexity on generalized inequalities |
|
|
129 | (4) |
|
3.6 Summary and discussion |
|
|
133 | (2) |
4 Convex Optimization Problems |
|
135 | (52) |
|
4.1 Optimization problems in a standard form |
|
|
136 | (3) |
|
|
136 | (1) |
|
4.1.2 Optimal value and solution |
|
|
136 | (2) |
|
4.1.3 Equivalent problems and feasibility problem |
|
|
138 | (1) |
|
4.2 Convex optimization problems |
|
|
139 | (12) |
|
|
140 | (1) |
|
4.2.2 An optimality criterion |
|
|
141 | (10) |
|
4.3 Equivalent representations and transforms |
|
|
151 | (12) |
|
4.3.1 Equivalent problem: Epigraph form |
|
|
151 | (1) |
|
4.3.2 Equivalent problem: Equality constraint elimination |
|
|
152 | (1) |
|
4.3.3 Equivalent problem: Function transformation |
|
|
152 | (4) |
|
4.3.4 Equivalent problem: Change of variables |
|
|
156 | (2) |
|
4.3.5 Reformulation of complex-variable problems |
|
|
158 | (5) |
|
4.4 Convex problems with generalized inequalities |
|
|
163 | (9) |
|
4.4.1 Convex problems with generalized inequalitiy constraints |
|
|
163 | (1) |
|
4.4.2 Vector optimization |
|
|
164 | (8) |
|
4.5 Quasiconvex optimization |
|
|
172 | (4) |
|
4.6 Block successive upper bound minimization |
|
|
176 | (6) |
|
|
176 | (2) |
|
|
178 | (4) |
|
4.7 Successive convex approximation |
|
|
182 | (2) |
|
4.8 Summary and discussion |
|
|
184 | (3) |
5 Geometric Programming |
|
187 | (8) |
|
|
187 | (1) |
|
5.2 Geometric program (GP) |
|
|
188 | (1) |
|
|
188 | (2) |
|
|
190 | (3) |
|
5.4.1 Successive GP approximation |
|
|
191 | (2) |
|
5.4.2 Physical-layer secret communications |
|
|
193 | (1) |
|
5.5 Summary and discussion |
|
|
193 | (2) |
6 Linear Programming and Quadratic Programming |
|
195 | (46) |
|
|
195 | (2) |
|
|
197 | (3) |
|
|
197 | (1) |
|
|
197 | (1) |
|
6.2.3 40-norm approximation |
|
|
198 | (1) |
|
6.2.4 Li-norm approximation |
|
|
199 | (1) |
|
6.2.5 Maximization/minimization of matrix determinant |
|
|
199 | (1) |
|
6.3 Applications in blind source separation using LP/convex geometry |
|
|
200 | (23) |
|
6.3.1 nBSS of dependent sources using LP |
|
|
200 | (5) |
|
6.3.2 Hyperspectral unmixing using LP |
|
|
205 | (5) |
|
6.3.3 Hyperspectral unmixing by simplex geometry |
|
|
210 | (13) |
|
6.4 Quadratic program (QP) |
|
|
223 | (2) |
|
6.5 Applications of QP and convex geometry in hyperspectral image analysis |
|
|
225 | (7) |
|
6.5.1 GENE-CH algorithm for endmember number estimation |
|
|
227 | (2) |
|
6.5.2 GENE-AH algorithm for endmember number estimation |
|
|
229 | (3) |
|
6.6 Quadratically constrained QP (QCQP) |
|
|
232 | (1) |
|
6.7 Applications of QP and QCQP in beamformer design |
|
|
233 | (5) |
|
6.7.1 Receive beamforming: Average sidelobe energy minimization |
|
|
233 | (2) |
|
6.7.2 Receive beamforming: Worst-case sidelobe energy minimization |
|
|
235 | (2) |
|
6.7.3 Transmit beamforming in cognitive radio using QCQP |
|
|
237 | (1) |
|
6.8 Summary and discussion |
|
|
238 | (3) |
7 Second-order Cone Programming |
|
241 | (16) |
|
7.1 Second-order cone program (SOCP) |
|
|
241 | (1) |
|
7.2 Robust linear program |
|
|
242 | (1) |
|
7.3 Chance constrained linear program |
|
|
243 | (1) |
|
7.4 Robust least-squares approximation |
|
|
244 | (1) |
|
7.5 Robust receive beamforming via SOCP |
|
|
244 | (4) |
|
7.5.1 Minimum-variance beamformer |
|
|
245 | (1) |
|
7.5.2 Robust beamforming via SOCP |
|
|
246 | (2) |
|
7.6 Transmit downlink beamforming via SOCP |
|
|
248 | (8) |
|
7.6.1 Power minimization beamforming |
|
|
250 | (1) |
|
7.6.2 Max-Min-Fair beamforming |
|
|
251 | (1) |
|
7.6.3 Multicell beamforming |
|
|
252 | (2) |
|
7.6.4 Femtocell beamforming |
|
|
254 | (2) |
|
7.7 Summary and discussion |
|
|
256 | (1) |
8 Semidefinite Programming |
|
257 | (68) |
|
8.1 Semidefinite program (SDP) |
|
|
258 | (1) |
|
8.2 QCQP and SOCP as SDP via Schur complement |
|
|
259 | (1) |
|
|
260 | (2) |
|
8.4 Applications in combinatorial optimization |
|
|
262 | (12) |
|
8.4.1 Boolean quadratic program (BQP) |
|
|
262 | (1) |
|
8.4.2 Practical example I: MAXCUT |
|
|
262 | (2) |
|
8.4.3 Practical example II: ML MIMO detection |
|
|
264 | (1) |
|
8.4.4 BQP approximation by semidefinite relaxation |
|
|
265 | (4) |
|
8.4.5 Practical example III: Linear fractional SDR (LFSDR) approach to noncoherent ML detection of higher-order QAM OSTBC |
|
|
269 | (5) |
|
8.5 Applications in transmit beamforming |
|
|
274 | (46) |
|
8.5.1 Downlink beamforming for broadcasting |
|
|
274 | (2) |
|
8.5.2 Transmit beamforming in cognitive radio |
|
|
276 | (1) |
|
8.5.3 Transmit beamforming in secrecy communication: Artificial noise (AN) aided approach |
|
|
276 | (5) |
|
8.5.4 Worst-case robust transmit beamforming: Single-cell MISO scenario |
|
|
281 | (4) |
|
8.5.5 Worst-case robust transmit beamforming: Multicell MISO scenario |
|
|
285 | (5) |
|
8.5.6 Outage constrained coordinated beamforming for MISO interference channel: Part I (centralized algorithm) |
|
|
290 | (9) |
|
8.5.7 Outage constrained coordinated beamforming for MISO interference channel: Part II (efficient algorithms using BSUM) |
|
|
299 | (7) |
|
8.5.8 Outage constrained robust transmit beamforming: Single-cell MISO scenario |
|
|
306 | (7) |
|
8.5.9 Outage constrained robust transmit beamforming: Multicell MISO scenario |
|
|
313 | (7) |
|
8.6 Summary and discussion |
|
|
320 | (5) |
9 Duality |
|
325 | (70) |
|
9.1 Lagrange dual function and conjugate function |
|
|
326 | (8) |
|
9.1.1 Lagrange dual function |
|
|
326 | (3) |
|
|
329 | (4) |
|
9.1.3 Relationship between Lagrange dual function and conjugate function |
|
|
333 | (1) |
|
9.2 Lagrange dual problem |
|
|
334 | (9) |
|
|
343 | (10) |
|
|
343 | (7) |
|
|
350 | (3) |
|
9.4 Implications of strong duality |
|
|
353 | (2) |
|
9.4.1 Max-min characterization of weak and strong duality |
|
|
353 | (1) |
|
9.4.2 Certificate of suboptimality |
|
|
354 | (1) |
|
9.4.3 Complementary slackness |
|
|
354 | (1) |
|
9.5 Karush-Kuhn-Tucker (KKT) optimality conditions |
|
|
355 | (10) |
|
9.6 Lagrange dual optimization |
|
|
365 | (5) |
|
9.7 Alternating direction method of multipliers (ADMM) |
|
|
370 | (3) |
|
9.8 Duality of problems with generalized inequalities |
|
|
373 | (11) |
|
9.8.1 Lagrange dual and KKT conditions |
|
|
373 | (3) |
|
9.8.2 Lagrange dual of cone program and KKT conditions |
|
|
376 | (2) |
|
9.8.3 Lagrange dual of SDP and KKT conditions |
|
|
378 | (6) |
|
9.9 Theorems of alternatives |
|
|
384 | (9) |
|
|
385 | (2) |
|
9.9.2 Strong alternatives |
|
|
387 | (4) |
|
9.9.3 Proof of S-procedure |
|
|
391 | (2) |
|
9.10 Summary and discussion |
|
|
393 | (2) |
10 Interior-point Methods |
|
395 | (26) |
|
10.1 Inequality and equality constrained convex problems |
|
|
395 | (2) |
|
10.2 Newton's method and barrier function |
|
|
397 | (7) |
|
10.2.1 Newton's method for equality constrained problems |
|
|
397 | (3) |
|
|
400 | (4) |
|
|
404 | (2) |
|
|
406 | (3) |
|
10.5 Primal-dual interior-point method |
|
|
409 | (10) |
|
10.5.1 Primal-dual search direction |
|
|
410 | (1) |
|
10.5.2 Surrogate duality gap |
|
|
411 | (1) |
|
10.5.3 Primal-dual interior-point algorithm |
|
|
411 | (3) |
|
10.5.4 Primal-dual interior-point method for solving SDP |
|
|
414 | (5) |
|
10.6 Summary and discussion |
|
|
419 | (2) |
A Appendix: Convex Optimization Solvers |
|
421 | (8) |
|
|
421 | (1) |
|
|
422 | (1) |
|
A.3 Finite impulse response (FIR) filter design |
|
|
423 | (4) |
|
A.3.1 Problem formulation |
|
|
424 | (1) |
|
A.3.2 Problem implementation using SeDuMi |
|
|
425 | (1) |
|
A.3.3 Problem implementation using CVX |
|
|
426 | (1) |
|
|
427 | (2) |
Index |
|
429 | |