Muutke küpsiste eelistusi

E-raamat: Convex Optimization: Theory, Methods and Applications

Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 117,32 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Over the past two decades, it has been recognized that advanced image processing techniques provide valuable information to physicians for the diagnosis, image guided therapy and surgery, and monitoring of human diseases. This book introduces novel and sophisticated mathematical problems which encourage the development of advanced optimisation and computing methods, especially convex optimisation. The authors go on to study Steffensen-King-type methods of convergence to approximate a locally unique solution of a nonlinear equation and also in problems of convex optimisation. Real-world applications are also provided. The following study is focused on the design and testing of a Matlab code of the Frank-Wolfe algorithm. The Nesterov step is proposed in order to accelerate the algorithm, and the results of some numerical experiments of constraint optimization are also provided. Lagrangian methods for numerical solutions to constrained convex programs are also explored. For enhanced algorithms, the traditional Lagrange multiplier update is modified to take a soft reflection across the zero boundary. This, coupled with a modified drift expression, is shown to yield improved performance. Next, Newtons mesh independence principle was used to solve a certain class of optimal design problems from earlier studies. Motivated by optimization considerations, the authors show that under the same computational cost, a finer mesh independence principle can be given than before. This compilation closes with a presentation on a local convergence analysis for eighthorder variants of HansenPatricks family for approximating a locally unique solution of a nonlinear equation. The radius of convergence and computable error bounds on the distances involved are also provided.
Preface vii
Chapter 1 Modern Convex Optimization to Medical Image Analysis
1(42)
Jing Yuan
Aaron Fenster
Chapter 2 A Study on the Local Convergence of a Steffensen-King-Type Iterative Method
43(18)
Ioannis K. Argyros
A. Alberto Magrenan
Inigo Sarria
Juan Antonio Sicilia
Chapter 3 Accelerated Frank-Wolfe Algorithm for Convex
61(20)
Abdelkrim El Mouatasim
Abderrahmane Ettahiri
Chapter 4 Lagrangian Methods for O(1/t) Convergence in Constrained Convex Programs
81(32)
Michael J. Neely
Hao Yu
Chapter 5 Extended Newton's Method for Solving Optimal Shape Design Problems
113(14)
Ioannis K. Argyros
Santhosh George
Chapter 6 Ball Convergence for Eighth-Order Variants of Hansen-Patrick's Family under Weak Conditions
127(16)
Ioannis K. Argyros
Daniel Gonzalez
Munish Kansal
Vinay Kanwar
Index 143