Muutke küpsiste eelistusi

E-raamat: Convexity Theory and its Applications in Functional Analysis

  • Formaat: PDF+DRM
  • Ilmumisaeg: 28-Jun-2014
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9781483294698
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 245,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 28-Jun-2014
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9781483294698
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Convexity Theory and its Applications in Functional Analysis is a five-chapter text that provides a geometric perspective of the convexity theory and its practical applications. Chapter 1 reviews the functional analytic preliminaries, including the Krein-Smulyan Theorem, the basic Choquet Theory, and the Bishop-Phelps Theorem. Chapter 2 gives the basic duality results, lattice theory and concrete representation theorems for order unit spaces and Banach lattices of type Mand L. Chapters 3 and 4 deal with the real affine function spaces through examining the Choquet simplex and the application of the study of real A(K) spaces to complex-values function spaces by means of a complex state space. Chapter 5 highlights the application of the theory to the study of non-commutative Banach algebras. This book will prove useful to mathematicians, engineers, and physicists.
Preface
1. Preliminaries
1. Separation and Polar Calculus
2. Krein-Smulyan Theorem and Corollaries
3. Gauge Lemma and Completeness
4. Subspaces of C(X) and Affine Functions
5. Representing Measures
6. Maximal Measures and the Choquet-Bishop-de Leeuw Theorem
7. Bishop-Phelps Theorems
2. Duality in Ordered Banach Spaces
1. Positive Generation and Normality
2. Order Unit and Base Norm Spaces
3. Directedness and Additivity
4. Homogeneous Functionals on Cones and the Decomposition Property
5. Banach Lattices and the Riesz Interpolation Property
6. Abstract L and M Spaces
7. Choquet Simplexes
8. Decomposition of Dual Cones
9. Stability of Split Sets and the Characterization of Complemented
Subcones
10. Application to A(K)
11. The Riesz Norm
3. Simplex Spaces
1. The Facial Topology for K and the Centre of A(K)
2. Facial Characterizations of Simplexes
3. Ideals in Simplex Spaces
4. Stone-Weierstrass Theorems for Simplex Spaces
5. Prime Simplexes and Anti-Lattices
6. Topological Characterization of the Extreme Boundary of a Compact
Simplex
7. Poulsens SimplexIts Uniqueness and Universality
8. Non-Compact Simplexes and Convex Sets
4. Complex Function Spaces
0. The Complex State Space
1. Complex Representing Measures
2. Interpolation Sets
3. Gauge Dominated Extensions and Complex State Space
4. Peak Sets and M-Sets
5. Dominated Interpolation
6. Decomposability and Exact Interpolation
7. M-Hulls and Function Algebras
8. Facial Topologies and Decompositions
9. Lindenstrauss Spaces
5. Convexity Theory for C*-Algebras
1. The Structure Topology and Primitive Ideas in A(K)
2. The Ideal Structure of a Unital C*-Algebra and the Facial Structure
of its State Space
3. Commutativity and Order in C*-Algebras
4. The Centre of a C*-Algebra, Weakly Central Algebras, Prime Algebras
5. Unit Traces for C*-Algebras
6. The State Spaces of Jordan Operator Algebras and of C*-Algebras
References
Index of Definitions
Subject Index