Muutke küpsiste eelistusi

E-raamat: Coordinate-Free Approach to Linear Models

(University of Chicago)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 75,32 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is about the coordinate-free, or geometric, approach to the theory of linear models; more precisely, Model I ANOVA and linear regression models with nonrandom predictors in a finite-dimensional setting. This approach is more insightful, more elegant, more direct, and simpler than the more common matrix approach to linear regression, analysis of variance, and analysis of covariance models in statistics. The book discusses the intuition behind and optimal properties of various methods of estimating and testing hypotheses about unknown parameters in the models. Topics covered include inner product spaces, orthogonal projections, book orthogonal spaces, Tjur experimental designs, basic distribution theory, the geometric version of the Gauss-Markov theorem, optimal and nonoptimal properties of Gauss-Markov, Bayes, and shrinkage estimators under the assumption of normality, the optimal properties of F-tests, and the analysis of covariance and missing observations.

Treats Model I ANOVA and linear regression models with non-random predictors in a finite-dimensional setting.

Arvustused

'Compelementary subjects are sketched in sequences of insightful exercises to the reader.' Zentralblatt MATH

Muu info

Treats Model I ANOVA and linear regression models with non-random predictors in a finite-dimensional setting.
1. Introduction;
2. Topics in linear algebra;
3. Random vectors;
4.
Gauss-Markov estimation;
5. Normal theory: estimation;
6. Normal theory:
testing;
7. Analysis of covariance;
8. Missing observations.
Professor Wichura has 37 years of teaching experience in the Department of Statistics at the University of Chicago. He has served as an Associate Editor for the Annals of Probability and was the Database Editor for the Current Index to Statistics from 1995 to 2000. He is the author of the PiCTeX macros (for drawing pictures in TeX) and the PiCTeX manual, and also of the TABLE macros and the TABLE manual.